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Abstract

We present a new approach for self-localization in
multi-modal camera networks. Unless measurements
and events observed by a sensor can be localized in time
and space, the observations are relatively meaningless.
We here present what we believe to be the first work
utilizing cameras for localization without prior knowl-
edge of their locations. Active Cameras, able to rotate
and zoom, are used to locate each sensor in pan-tilt
space. With nothing more than these pan-tilt coordi-
nates, cameras and sensors are simultaneously localized
within a normalized frame of reference by numerically
solving a system of nonlinear geometric constraints.
We describe experimental results using two PTZ Cam-
eras and a small wireless sensor network. These results
are extended, evaluating the algorithm’s scalability with
o large simulated network and an empirically-validated
noise model. The paper concludes with o discussion of
future work.

1. Introduction

With applications ranging from monitoring remote
inhospitable environments (see Figure ) to implant-
ing intelligent and interactive sensors in our homes,
wireless sensor networks have emerged as one of the
most promising sensing technologies. In the multi-
disciplinary endeavor to realize their potential, one
of the most active areas of sensor network research
has been localization. A sensor’s observations acquire
meaning when associated with the time and location at
which they were recorded. For example, a temperature
reading of 62.7° is useless if decoupled from the details
of when and where the reading was made.

In our work, we have chosen to focus on the problem
of spatial localization. More specifically, we propose a
solution for placing the constituent nodes in the sensor
network in a common spatial frame of reference.

Figure 1. Cypress-Tupelo Swamp. A potential site for wire-
less sensor network deployment.

1.1. Our Approach

Developed within a larger framework [7], our tech-
nique for spatial localization concentrates on the
widespread need for ad-hoc deployment. We assume
no prior information whatsoever about the locations of
the sensors or camerad]. We also require no special-
ized hardware, using commodity surveillance cameras,
wireless motes and LEDs. An outline of our approach
is as follows:

e Active pan-tilt-zoom cameras are used to find the
angular locations of the sensor nodes in the cam-
era’s local pan-tilt parameterization of space. Dif-
fuse LEDs are used to make the sensor nodes vis-
ible to the cameras.

¢ Given a subset of these pan-tilt coordinates, a sys-
tem of nonlinear geometric constraints is first gen-
erated, then solved numerically to provide an esti-
mate of the unknown locations within a common
spatial frame.

e Many such random subsets are used together to
improve signal-to-noise, producing both locations
for the sensors in the network as well as the loca-
tion and orientation of the cameras.

1 For simplicity, we temporarily assume that the sensor nodes
lie in a some common plane but subsequently assert that this
constraint is unnecessary.



1.2. Related Work

As mentioned previously, sensors in a wireless sen-
sor network must be able to describe the events
they observe in both time and space. Several tech-
niques have been presented in the literature for time-
synchronization [, Ol [6, T4]. For spatial localiza-
tion, there have been several innovative approaches
suggested. Various technologies such as ultrasound
ranging, acoustic time of flight, radio signal strength
and interferometry, have been demonstrated to acquire
good pairwise distance estimates, often incorporating
the acquired range measurements into a planar graph
(see [I8] and surveys [12,[19]). Poduri et al. [20] showed
that when nodes are placed in 3D, the number of neigh-
bors that an average node has grows dramatically, an
observation that suggests investigation into methods
which do not rely on pairwise distances.

Recent research in camera localization includes work
by Funiak, et al. [8] who proposed a robust probabilis-
tic model for simultaneous localization and tracking.
Lymberopoulos, et al. [T5] considered the use of epipo-
lar geometry to perform localization, using LEDs to
assist in imaging other sensors.

Probably the most closely related work to ours is
the Spotlight system, designed by Stoleru et al. [23].
The primary difference between our approach and this
work lies in our focus on truly ad-hoc deployment.
We assume that the cameras will have unknown lo-
cation and orientation whereas the Spotlight system
relies on accurate knowledge of both camera position
and orientation. Furthermore, in Spotlight the individ-
ual sensors detect when a laser or global light source
is projected onto them, a design that requires time-
synchronization.

2. Optical Self-Localization

In this section, we first describe the underlying theo-
retical basis of our self-localization approach. We next
discuss potential numerical techniques for solving the
system of multivariate nonlinear equations resulting
from our analysis. While at present, we have restricted
ourselves to networks located in the plane, we outline
the modifications needed to allow node placement in
three dimensions. The importance of intrinsic camera
calibration is also addressed.

2.1. Deriving the Nonlinear Formulation

Let us consider a planar network of wireless sensor
nodes, N = {PI:PZ; B 5pn}7 where p; = (pmzapylao)
denotes the location of node i. For the cameras, we
must describe both position and orientation. With
each camera j, we therefore associate a position
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Figure 2. Normalized Coordinate Frame. Illustrates the
sensor network N = {plap25 s apn}a Pi = (pxi,pyiyo):
with two active cameras, respectively located at ¢; and c».
Geodetic locations are normalized such that the cameras are
separated by unit distance in the plane, thus ¢; = (0,0, cz1)
and ¢z = (1,0, cz2). The illustration also depicts node p;
localized at pan-tilt coordinates (aii,3i1) relative to the
first camera.

c; = (cxj,cyj,cz;) and a 3-DOF rotation ®; =
(0z;,0y;,0z;). As we focus on ad-hoc deployment, the
values for p;, ¢;, and ®; are all unknown.

Without any notion of geodetic location or scale,
the best that we can hope to recover is a local and
relative coordinate frame. Rather than pick some ar-
bitrary scale, we have chosen to normalize the coor-
dinate frame based on the distance between the two
cameras. The camera locations are thus ¢; = (0,0, cz1)
and c2 = (1,0, c22). The camera elevations remain un-
known as do the orientation parameters. Figure 2l de-
picts the normalized coordinate frame (note that the
nodes are not constrained to lie within the unit square).

The only values we are able to measure are the an-
gular location of a given node relative to each camera.
We parameterize the camera’s pan-tilt space with coor-
dinates (a, 8), in radians. Camera j observes node 7 at
location (aj, Bij), indicating that camera j would need
to pan by a;; and tilt by 3;; in order to aim directly
at node 1.

We now derive a relationship between these mea-
surements and the unknown values we wish to deter-
mine. In considering the relationship between camera
j and node i, for convenience we define the offset vec-
tor v;; = p; — ¢;. As a vector can also be decomposed
into the product of its magnitude with a unit vector
in the same direction, we can write v;; = ||v4;]| - V45.
The unit vector v;; can be expressed in two ways. The
first expression is obtained by simply dividing v;; by
its magnitude, ||v;;]|, yielding

3 e 1 pzT; — cx;
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The second expression is found by rotating the op-
tical axis of camera j such that it passes through p;.
The standard camera model used in Computer Graph-
ics (e.g. [I], p. 434) defines the local coordinate frame



with the camera looking downward along the z-axis at
an image plane parallel to the z-y plane. The optical
axis thus points in the —Z direction in the local co-
ordinate frame. To transform from the camera’s local
frame into world coordinates, we must apply the three-
axis rotation defined by ®;. To now point the optical
axis at p;, we pan and tilt the camera with the rota-
tions corresponding to (ayj, Bi;). At length, we find the
second expression

Vij = Ra,; Rg,; - Re, - (—£). (2)
S — N

pan—tilt world local

Now, we equate these two expressions for ¥;;. Merg-
ing (D), in terms of p; and c;, with ), in terms of a;;,
Bij and ©;, we derive a relationship between the ob-
servations and the unknowns we wish to solve for:
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This relationship embodies three constraints per
node-camera pair, one each in z, y and 2. As only
two measurements are used, however, the three con-
straints cannot be independent. So, each node-camera
pair contributes only two to the rank of the system for
a total rank of 4n. We have 2n + 8 variables or un-
knowns to solve for, elevation and 3-DOF orientation
(4 parameters) for each camera, and the 2D position of
each of the n nodes. For the system to be sufficiently
constrained, we must have 4n > 2n + 8 which yields
n > 4. Thus, measurements from at least 4 nodes must
be used or the resulting system of nonlinear equations
(constraints derived as the components of @)) will be
under-determined. However, as we will see in Section [3],
using larger numbers of nodes is preferable, as it helps
mitigate the presence of noise in the measurements,
greatly improving localization accuracy.

2.2. Solving the Nonlinear System

In the previous section, we derived a system of geo-
metric constraints that govern the relationship between
the relative configuration of nodes and cameras and the
angular locations of the nodes measured by each cam-
era. As we have noisy measurements, finding a solution
to the problem becomes an optimization problem. Op-
timization is a broad field, and several approaches have
been suggested for solving general nonlinear systems.

We chose to base our solver on a variant of New-
ton’s method, one of the most straightforward and well-
known techniques for finding roots or function extrema.

For a one-dimensional function, Newton’s method re-
lies upon the function’s derivative to iteratively move
toward the nearest root. Newton’s method can be ex-
tended to multivariate nonlinear systems. Called the
Newton-Raphson method, this method logically uses
the Jacobian matrix in place of the derivative. While
in general the Jacobian must be estimated numerically
by finite differences, in our case we know the analyti-
cal representation. As with other techniques, Newton’s
method is prone to convergence at local extrema de-
pending on the initial search location. Our implemen-
tation is therefore been based on a globally convergent
Newton’s approach from Numerical Recipes [21] which
attempts to backtrack if it reaches a non-global opti-
mum.

2.3. Extending to 3D

Thus far, we have maintained the assumption that
all nodes in the network lie in some common plane, in
our normalized coordinate frame, Vi,pz; = 0. While
this may suffice or even be a good approximation for
most scenarios, in general, we would like to remove this
restriction. Doing so requires minimal change to our
model, simply making pz; an unknown which modifies
@) to produce
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where ||v;;|| = \/(pac, — cxj)2 + py? + (pzi — czj)2.

As before, we would still have 4n measurements,
only now we wish to solve for 3n+ 8 variables. This im-
plies that we must have measurements for n > 8 nodes
before the system will be determined.

2.4. Camera Calibration

In order to accurately determine the pan-tilt coor-
dinates of an image point, it is necessary to know the
intrinsic or internal characteristics of the camera which
include focal length, principal point (the true center of
the image) and distortion parameters. Both of cameras
used in our experiments were individually calibrated at
their widest field-of-view. Many frames of a checker-
board calibration target at different positions and ori-
entations were used as input to the Camera Calibration
Toolbox [I] for MATLAB. The points of intersection
between neighboring squares on the calibration target
are located in each frame and these points are collec-
tively used to estimate the internal parameters for the
camera. These parameters are stored in a configuration
file and read into the system at run-time.



As the PTZ cameras can also zoom, we first cal-
ibrated one camera at various focal lengths. It be-
came obvious that some parameters such as the prin-
cipal point were not constant across focal lengths, so
re-calibration was indeed critical. The most interest-
ing discovery in the calibration process, however, was
that even with per-zoom-level calibration, the compu-
tation of pan-tile coordinates was error-prone for all
but the widest field-of-view zoom. We eventually con-
cluded that the center of rotation coincides with the fo-
cal point only for the widest field-of-view. Other zoom
levels therefore introduce a translation as the camera
pans or tilts about the center of rotation.

3. Experimental Results

Our primary objectives in evaluating our proposed
self-localization technique are to quantify its accuracy
and confirm its scalability. We first employed a net-
work of 12 MicaZ motes to examine the localization
accuracy of our approach under realistic conditions. To
overcome the limitations of this small network, we also
experimented with a simulated network of 100 motes
and found that larger networks offer improved accuracy
despite their modest increase in computation overhead.

3.1. Experimental Deployment

Our experimental platform consists of a network of
12 MicaZ motes equipped with omni-directional LEDs
and two PTZ cameras: a Sony EVI-D100 and a Sony
SNC-RZ25N (see Figure B). Our application software,
written primarily in Java, runs on a standard laptop,
using JNI to integrate native code for image process-
ing and for controlling the EVI-D100. Communication
with the sensor network is facilitated by another mote
wired directly to the laptop. A core component of our
system, the nonlinear solver consists of a Java imple-
mentation of the globally convergent Newton’s method
found in Numerical Recipes [21]. Our solver is substan-
tially (20 —25x) faster than MATLAB’s Optimization
toolbox which we used in initial simulations.

S .
Figure 3. Experimental platform: MicaZ sensor network,

laptop, 2 PTZ cameras.

To self-localize a network N consisting of n nodes,

the system follows this procedure:

A subset of k nodes, namely Sy = {pi,,---,Pi. }
is selected.

e The nodes in Sy are sequentially interrogated,
each ascending an omni-directional LED which
the cameras use to pinpoint the node’s location
in their individual pan-tilt parameterization.

e After finding the pan-tilt location for each node p,
the corresponding nonlinear system of equations is
solved numerically, yielding location estimates for
Vp € Sk.

e Many such subsets, S,El),S,gz),...,S,gT), are ran-
domly chosen and location estimates for each sub-
set S,(ct) is determined as above.

e When this process completes, we have several lo-
cation estimates for each node (1% expected) and
average them to derive the final location estimate
for each given node.

Sample results are presented in Figure Hlfor our net-
work of 12 MicaZ motes. Each dot in these graphs
shows an estimated mote location over the unit square
[0,1]2, as calculated by the system. In Figure the
localization results for subsets of size k = 6 are shown,
on the left colored by subset ID and on the right colored
by mote ID. Figure then shows analogous results
for subsets of size k = 9, hinting at the improvement in
accuracy by using larger subsets. While the absence of
ground truth localization prevents us from determining
precise localization errors, we can see how the solutions
for random subsets collectively suggest an accurate lo-
cation estimate.

3.2. Empirically-Verified Noise Model

Though unable to quantify the localization accuracy
of our experiments due to the lack of ground truth loca-
tions (and camera orientations), we nonetheless hoped
that we could characterize the observed noise in such a
manner that we might produce similar measurements
synthetically. Instead of generating the exact pan-tilt
measurements that would result from the ground truth
locations, we apply an angular perturbation ~ N (0, ()
to each measurement, akin to the model proposed by
Ercan et al. [B, 6], using ¢ = 0.1°. We generate syn-
thetic measurements using the mean locations derived
from the experimental network using subsets of size
k = 6. A comparison between the real and synthetic
data is presented in Figure The synthetic noise
model closely reflects the error characteristics of the
observed data.
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(b) Results with subsets of size kK = 9 nodes

Figure 4. Self-Localization Results for our Experimental 12-
Mote (MicaZ) Network. shows simultaneous plots of
localization from 100 randomly selected 6-mote subsets, on
the left colored by subset ID, on the right by mote ID. KE]
shows analogous results for 9-mote subsets.
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Figure 5. Empirically-validated Noise Model. plots the
solutions for 100 subsets using actual measurements ob-
tained from the experimental system (same data displayed
in Figure [i(a)). plots the solutions for 100 subsets us-
ing simulated measurements obtained using the synthetic
noise model. shows a comparison between the the ob-
served and the synthetic data. The mean location for each
mote along with the error ellipse indicating 95%-confidence
are depicted. As in the first two plots, blue is used for the
observed data, red for the synthetic data.

3.3. Simulation

To demonstrate the improved localization accuracy
obtained with larger subsets, we turned from our small
physical deployment to a larger simulated network.
Simulated networks provide us with ground truth mote
locations, essential to properly addressing the question
of localization error.

The localization accuracy is associated, not with the
size of the network, but with the subset size k. So,
whether the network has tens, hundreds or thousands
of nodes, the localization accuracy will be same for a
given subset size k assuming the number of estimates
per node is fixed. For a fixed k, the required computa-
tion time grows linearly with the size of the network,
as the network size n grows, the number of random
subsets processed T" must increase proportionally.

Our simulated network distributed 100 nodes uni-
formly at random within a unit square [0,1]?. The
cameras were placed at the same normalized heights
as in our experimental setup, the first above the ori-
gin (0,0), the second above (0,1). The same process
of selecting subsets described in Section Bl angularly
locating the motes and solving the nonlinear system is
used to find location estimates within the plane. The
noise model used is the same described above in Section
0.2

In Figure [ we present results for a 100-node net-
work choosing subsets of size 5, 10, 20 and 50. To ar-
ticulate these results in real-world terms, if we imagine
the network is 100m x 100m, then these errors would
be as depicted in Figure B and Table [l Remarkably,
with two cameras positioned 100 meters apart, the sys-
tem can localize every node to within 15.82 cm of its
true location. Moreover, it localizes a majority of them
with errors less than 5 cm.

—— 5-node Subsets
10-node Subsets
— 20-node Subsets
— 50-node Subsets

Error Magnitude (meters)

— L
0 10 20 30 40 50 60 70 80 920 100
Cumulative Percentage of Nodes

Figure 6. Localization Error Distributions. For a simulated
100 x 100 meter network containing 100 nodes, the curve
showing the percentage of nodes localized within any given
error is shown for 5-, 10-, 20- and 50-node subsets.



Subset Size | 50% Confidence | 95% Confidence
5 nodes 6.70 m 96.25 m
10 nodes 43.57 cm 2.14 m
20 nodes 5.26 cm 17.19 cm
50 nodes 4.85 cm 11.73 cm

Table 1. Errors for 100m x 100m 100-node Network.

4. Future Work

While this work has provided a useful method for
network self-localization, there are a number of direc-
tions yet to be explored. Much of the future work sug-
gested below is of broader interest, particularly to the
Computer Vision community.

4.1. Epipolar Geometry in Pan-Tilt Space

Epipolar Geometry describes the relationship of im-
age locations between two cameras. For standard fixed
field-of-view cameras, the epipolar constraint dictates
that a spatial point (X,Y, Z) imaged at point (z,y) in
the first camera corresponds to a point (z',y') some-
where along the unique epipolar line in the second cam-
era’s image. This constraint arises from the simple
geometric fact that the point (X,Y,Z) and the two
camera, centers determine a unique plane, not surpris-
ingly called the epipolar plane. A detailed discussion
of epipolar geometry can be found in Chapter 9 of [10].

Epipolar geometry is fundamental to areas of Com-
puter Vision such as Structure from Motion and 3D
Scene Reconstruction. We consider it here as it has
the potential to solve directly for the camera locations
instead of searching over a high-dimensional parame-
ter space. Epipolar geometry has been derived for fixed
field-of-view cameras [10] and omni-directional cameras
[I7] (hemispherical or panoramic images captured us-
ing fish-eye or catadioptric lenses). To our knowledge
however, epipolar geometry has not been derived for
the pan-tilt space parameterization we have used in
our work.

4.2. Multiple Cameras and Occlusions

Throughout the work presented in this paper, we
have used two cameras and maintained the assump-
tion that the sensors to be localized were visible from
both cameras. In practice however, this assumption
will rarely hold. We therefore would like to explore an
estimation model where there are a large number of
cameras and each sensor must be imaged by at least
two, but may be occluded from the other cameras.
While we have not yet looked closely at such a model,
we are optimistic that this may be possible. We also
wish to consider integrating a better model for com-

bining multiple measurements, perhaps similar to that
used by Stroupe et al. [24].

4.3. Distributed Network Calibration

Closely related to the simultaneous localization of
a large network of cameras with potentially occluded
sensors is the problem of Distributed Network Cali-
bration. Large-scale Camera Network Calibration has
been investigate previously [2, 22] and distributed ap-
proaches for fixed-field of view cameras have recently
been published [3, 8. We hope to investigate a dis-
tributed implementation, perhaps based on the TinyOS
implementation of the Levenberg-Marquardt algorithm
(see below).

4.4. Levenberg-Marquardt implementation

In closely related work, we modified an existing im-
plementation [I3] of the Levenberg-Marquardt algo-
rithm, porting it to run in TinyOS on MicaZ mote [1].
The L-M algorithm is frequently used to numerically
solve nonlinear equations in high-dimensions in fields
such as Computer Vision [25]. In theory, using the L-M
algorithm instead of Newton’s method should both im-
prove the running time and facilitate self-localization
of larger networks.

5. Summary

In this paper, we have presented an approach for the
optical self-localization of a network of wireless sensor
nodes using active cameras. Unlike most localization
schemes, this method does not rely on inter-node dis-
tance measurements, but rather on the location of a
node in each camera’s pan-tilt space. Our algorithm
numerically solves the systems of nonlinear equations
derived from the constraints produced by the analytical
model and a subset of the measurements. These solu-
tions are used to estimate the locations of the nodes
in the network. We demonstrated results both on a
physical deployment and a larger-scale simulation and
concluded with a discussion of future work.
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Figure 7. Simulated Large-Scale Network. [(a){(d)|present localization results for 5-, 10-, 20- and 50-node subsets, respectively.
(e)H(h)] present the mean of the solutions for each node together with the ellipse of 95% confidence. Each node is plotted in
a unique color and a black error line is drawn between each node’s ground truth location and the mean of its solutions.
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