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Finding Comparable Patient Histories:
A Temporal Categorical Similarity Measure with

an Interactive Visualization
Krist Wongsuphasawat

Abstract—Finding similar patients within millions of Electronic Health Records (EHRs) is a challenging problem. A major challenge
is how to define a similarity measure that capture the searchers intent. Many methods for computing a similarity measure between
time series have been proposed, but patient history with temporal categorical data require fresh thinking. To address this problem, we
propose a temporal categorical similarity (TCS) measure, which is based on the concept of aligning temporal data by sentinel events,
then matching events between two records. Next, the TCS measure is calculated as a combination of the time differences between pairs
of events and number of mismatches. To accommodate customizable parameters in the TCS measure and results interpretation, we
implemented Similan, an interactive tool for database search and results visualization. A usability study with 8 participants demonstrates
that Similans interface was easy to learn, but users had more difficulty understanding the TCS measure. Users had strong opinions
that Similan could help them find similar records in many temporal categorical databases.

Index Terms—Information visualization, Similarity measures, Medical Information Systems, Time series analysis.
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1 INTRODUCTION

Electronics Health Records (EHRs) are being collected
by leading health organizations. These EHRs contains
millions of records with patient histories. Challenges
arise when clinicians want to find patients with similar
symptoms to a target patient in order to guide the treat-
ment of the target patient. A major challenge is defining
similarity measures for temporal categorical data.

Many methods for computing a similarity measure
between time series have been proposed. However, mod-
ifying them to suit temporal categorical data remains
an open problem. This paper presents a temporal cat-
egorical similarity (TCS) measure data which is based
on aligning temporal data by sentinel events [1], then
matching events between two records. If the events
are identical between records, then the TCS measure
is the sum of the distances (time difference) between
the matched pairs. A lower distance represents higher
similarity.

The problem becomes more complex when the set of
events in the target patient does not exactly match those
in another patient. To accommodate unmatched events,
we convert this into an assignment problem and use
the Hungarian Algorithm [2], [3] to match events that
produce the minimum distance. Consequently, the TCS
measure is redefined as a combination of the number of
mismatches and the distance.

• Krist Wongsuphasawat is a Graduate Student in the Department of
Computer Science and the Human-Computer Interaction Laboratory at
the University of Maryland, College Park, MD, 20742.
E-mail: kristw@cs.umd.edu

Furthermore, we believe that an interactive user in-
terface will provide help in finding and understanding
results. Since the TCS measure has many customizable
parameters which need to be adjusted. We developed an
interactive interface, Similan, that allows users to adjust
them and see the results in real time. Similan adopts
the alignment concept from LifeLines2 [1] and allows
users to preprocess the dataset by aligning events by a
sentinel event. Similan displays all events in a timeline
for each record. Our extension to the rank-by-feature
framework [4] allows users to select a target record and
then adjust the ranking criteria to explore the impact of
result order.

Records are simultaneously visualized on a coordi-
nated scatterplot according to the number of mismatches
and the distance function. The comparison panel pro-
vides more advanced exploration. When users select
one record for a detailed comparison with the target
record, they see links between events, enabling them to
understand how close the relationship is.

This paper is organized as follows: Section 2, covers
the relevant history of similarity searching and related
areas. Section 3 discusses the TCS measure. Section 4
discusses the user interface design. Section 5 describes
a usability study done to evaluate the interface. We de-
scribe future work in section 6, and conclude in section 7.

2 RELATED WORK

A growing body of recent work is focused on find-
ing similar patients. For example, the national health
insurance system in Australia records details on med-
ical services and claims provided to its population.
Tsoi et al. [5] proposed a method based on clustering
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and hidden Markov models to classify patients from
medical claims data into various groups. Their aim is
to detect similar temporal behavioral patterns among
patients in the dataset. PatientsLikeMe [6] is an online
community where patients with life-altering diseases
share and discuss personal health experiences. Users
enter their structured data on symptoms, treatments,
and health outcomes into the site. This information is
rendered as data visualizations on both an individual
and an aggregate level. Users can also search for similar
patients by specifying demographic information. Unlike
PatientsLikeMe, the TCS measure focuses on a sequence
of events (symptoms, treatments, and outcomes) in pa-
tient records, which is temporal categorical data.

Temporal categorical data is one type of time series.
A traditional time series is a sequence of data values,
measured at successive times, spaced at (often uniform)
time intervals. One common notation is:

Y = {Yt | t ∈ T}

Many methods for computing a similarity measure
between numeric time series have been proposed. Ac-
cording to a survey of previous methods by Ding et
al. [7] and Saeed and Mark [8] , similarity measures for
time series can be grouped into various types.

The first type is lock-step measures, which compare
the i-th point of one time series to the i-th point of
another. The most straightforward similarity measure of
this type is the Euclidean distance between two discrete
time series Xt and Yt where the distance between two
series is defined as:

D(X, Y ) =

√√√√ M∑
t=0

(Xt − Yt)2

However, since the mapping between the points of two
time series is fixed, these distances measures are very
sensitive to noise and misalignments in time, and are
unable to handle local time shifting.

Second, elastic measures are distance measures that
allow comparison of one-to-many points (e.g., DTW) and
one-to-many / one-to-none points (e.g., LCSS). Dynamic
time warping (DTW) [9], is an algorithm for measuring
similarity between two sequences which may vary in
time or speed with certain restrictions. The sequences
are ”stretched” or ”compressed” non-linearly in the time
dimension to provide a better match with another time
series. Continuity is less important in DTW than in
other pattern matching algorithms; DTW is an algo-
rithm particularly suited to matching sequences with
missing information. However, one important restriction
imposed on sequence matching is on the monotonicity of
the mapping in the time dimension. This may be violated
in EHRs data since swapping of event order can occur.

Another group of elastic measures are developed based
on the concept of the edit distance [10]. In information
theory and computer science, the edit distance between
two strings of characters is the number of operations

required to transform one of them into the other. The
lower the number is, the more similar they are. There
are several different algorithms to define or calculate
this measure. Hamming distance [11], Levenshtein dis-
tance [12] or Jaro-Winkler distance [13] are some ex-
amples. However, the best known such distance is the
LCSS distance, utilizing the longest common subsequence
model. [14], [15] If a temporal categorical database sam-
ples at uniform intervals, we may represent that data
in string form (”AABBAC...”) and use edit distance as
a similarity measure. However, problems arise if more
than one event occurs at the same time.

Pattern-based similarity measures, such as SpADe
[16], finds out matching segments within the entire time
series, called patterns, by allowing shifting and scaling
in both the temporal and amplitude dimensions. The
problem of computing similarity value between time
series is then transformed to the one of finding the most
similar set of matching patterns. The disadvantage of
SpADe is that it requires tuning a number of parameters.

The transform-based techniques project time series
onto a set of functions such as sinusoids or principal
components. The data transformation reduces the di-
mensionality of the original times series and facilitates
the use of machine learning techniques [17] or other
methods [18] in matching time series. The TQuEST [19]
threshold-based approach introduced an idea to trans-
form time-series into a sequence called threshold-crossing
time intervals. Each time interval is then treated as a
point in two dimensional spaces, where the starting
time and ending time constitute the two dimensions.
The similarity measure is then computed from the two
sequences of time interval points.

However, Xt and Yt for all methods above are numer-
ical values. But for temporal categorical data, they are
not numerical values.

Yt ∈ {“Category1”, “Category2”, . . .}

The TCS measure can address all the issues. Neverthe-
less, the TCS approach needs to match events between
two records. New challenges arise since there are many
possible ways to match events but the TCS measure
requires matching which will yield maximum similarity.
This matching problem can be reduced to problem in
graph theory, called the assignment problem. [2] In its most
general form, the problem is as follows:

“There are a number of agents and a number of tasks. Any
agent can be assigned to perform any task, incurring some
cost that may vary depending on the agent-task assignment.
It is required to perform all tasks by assigning exactly one
agent to each task in such a way that the total cost of the
assignment is minimized.”

If the numbers of agents and tasks are equal and the
total assignment cost for all tasks is equal to the sum
of the costs for each agent (or the sum of the costs for
each task, which is the same thing in this case), then the
problem is called the Linear assignment problem. When
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the assignment problem has no additional qualifications,
the term linear assignment is used.

The Hungarian algorithm is a combinatorial optimiza-
tion algorithm which solves assignment problems in
polynomial time (O(n3)). The first version, known as
the Hungarian method, was invented and published by
Kuhn [2] in 1955. This was revised by Munkres [3] in
1957, and has been known since as the Hungarian algo-
rithm, the Munkres assignment algorithm, or the Kuhn-
Munkres algorithm. Bertsekas [20] has proposed a new
and more efficient algorithm for the assignment problem.
The factor of improvement increases with the problem
dimension N and reaches an order of magnitude for N
equal to several hundreds.

Before applying the similarity measure to the data,
Similan allows users to preprocess data by aligning them
by sentinel events. Previous work has shown that using
an absolute time scale alone does not address all of the
tasks users face when comparing temporal categorical
data. In particular, tasks that involve temporal compar-
isons relative to important events such as a heart attack
are not supported. Wang et al. [1] propose a concept
of aligning temporal data by sentinel events. Sentinel
events are important events, e.g. heart attack, which
are used as references. The time in each record is then
recomputed, referenced from the time that sentinel event
in each record occurs. Making time at which sentinel
event, events before sentinel event and events after
sentinel events occur become zero, negative and positive,
respectively.

Seo and Shneiderman [4] presented a conceptual
framework for interactive feature detection named rank-
by-feature framework. In the rank-by-feature framework,
users can select an interesting ranking criterion, and
then all possible axis-parallel projections of a multidi-
mensional data set are ranked by the selected ranking
criterion. The ranking result is visually presented in a
color-coded grid called Score Overview. Similan, inspired
by this rank-by-feature idea, allows users to rank the
dataset by many criteria derived from the TCS measure
and display those scores in a color-coded grid.

In order to facilitate the result interpretation, the data
records should be visualized in a meaningful way. Ma
et al. proposed Event Miner, a tool that integrates data
mining and visualization for analysis of temporal cate-
gorical data. [21] However, Event Miner was designed
for analyzing only one record of temporal categorical
data. There has been a number of published visualization
works on temporal categorical data on timelines. A
design using timelines for medical records was proposed
by Powsner and Tufte [22], who developed a graphical
summary using a table of individual plots of test results
and treatment data. LifeLines [23] presented personal
history record data organized in expandable facets and
allowed both point event and internal event represen-
tations. Alonso et al. [24] conducted an experiment to
compare a tabular format and the graphical presentation
in LifeLines. Results suggest that overall the LifeLines

representation led to much faster response times. A test
showed that LifeLines can reduce some of the biases of
the tabular record summary. However, their design is not
suitable for displaying many records at the same time
and does not assist comparison between records.

3 TEMPORAL CATEGORICAL SIMILARITY
(TCS) MEASURE

We define a new similarity measure for temporal cat-
egorical (TC) data. The following notation is used to
describe a temporal categorical record, which is a list
of temporal categorical events.

X = {xc
t}

c ∈ {“Category1”, “Category2”, . . .} and t ∈ Time

The TCS measure consists of two measures. One mea-
sure is for the matched events, events which occur both
in target record and compared record. Another measure
is for the missing or extra events, events which occur in
a target record but do not occur in compared record, or
vice versa. The first measure is defined in terms of dis-
tance function between two temporal categorical records.
A lower distance means higher similarity. The distance
function is later converted to a match score, ranging from
0.01 to 1.00. The second measure is a mismatch score. It is
based on difference in number of events in each category
between the two records. Both measures are combined
into total score, ranging from 0.01 to 1.00. For all three
scores, a higher score represents higher similarity. Only
a perfect match, having no missing or extra events and
zero distance, will yield a total score of 1.00.

3.1 TCS Distance Function
We first define a distance function between each pair of
events, as follow:

d(xc
t , y

d
u) =

{
|t− u| if c = d
∞ if c 6= d

(1)

The distance is computed from time difference if both
events have the same category. Since we do not allow
matching between different event categories, the dis-
tance when both events come from a different category
is infinity.

Then, a distance function between a target record

X = {xc1
t1 , xc2

t2 , . . . , xcm
tm
}

and a compared record

Y = {yd1
u1

, yd2
u2

, . . . , ydn
tn
}

is described as follow:

D(X, Y ) = min
∑

i∈[1,m],j∈ [1,n] d(xci
ti

, y
dj
uj )

each i and j is used exactly once.
(2)

A distance function between two records is calculated
by matching events from the two records into event
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pairs and summing the distance d(xc
t , y

d
u) between each

pair. There can be many possible ways to match events
into pairs. Therefore, the distance function will be calcu-
lated from the matching which produces the minimum
distance. (How to match events to produce minimum
distance will be explained in section 3.2.) However, this
distance function works only when m = n because it
requires a perfect match between the two records. Also,
even when m = n, this case can occur:

X = {xcategory1
t1 , xcategory1

t2 , xcategory2
t3 }

Y = {ycategory1
u1 , ycategory2

u2 , ycategory2
u3 }

This will force at least one pair of different category
events to pair together, which is not preferred. Therefore,
the distance function fills in some null events (xnull) to
equalize numbers of events between the two records in
each category. The two lists above become.

X = {xcategory1
t1 , xcategory1

t2 , xcategory2
t3 , xcategory2

null }

Y = {ycategory1
u1 , ycategory1

null , ycategory2
u2 , ycategory2

u3 }

The distance function between each pair of events is
revised. Let X be a target record and Y be a compared
record.

d′(xc
t , y

d
u) =

{
dist(t, u) if c = d
∞ if c 6= d

(3)

dist(t, u) =


|t− u| if t, u 6= null

missingPenalty if t 6= null and u = null
extraPenalty if t = null and u 6= null

∞ if t, u = null
(4)

Currently, the missing event penalty (missingPenalty)
and extra event penalty (extraPenalty) are set to zero
by default. This is because the distance function is a
measure for the matched events. It should not be affected
by missing or extra events. Those events will be handled
by another measure which will be described in section
3.4

Finally, a distance function between a target record X
and a compared record Y becomes:

D′(X, Y ) = min
∑

i∈[1,m],j∈ [1,n] d
′(xci

ti
, y

dj
uj )

each i and j is used exactly once.
(5)

3.2 Minimum Distance Perfect Matching

The problem here is how to match each xci
ti

and y
dj
uj in

X and Y to yield minimum distance. Then the problem
becomes an assignment problem (see section 2).

Let events (xci
ti

) from X become agents and events
(ydj

uj ) from Y become tasks. Cost of the assignment is
d′(xc

t , y
d
u). Then the Hungarian Algorithm solves the

problem. The distance matrix between X and Y is
displayed below.


yd1

u1
yd2

u2
. . . ydn

un

xc1
t1 d′(xc1

t1 , yd1
u1

) d′(xc1
t1 , yd2

u2
) . . . d′(xc1

t1 , ydn
un

)
xc2

t2 d′(xc2
t2 , yd1

u1
) d′(xc2

t2 , yd2
u2

) . . . d′(xc1
t1 , ydn

un
)

...
...

...
. . .

...
xcm

tm
d′(xcm

tm
, yd1

u1
) d′(xcm

tm
, yd2

u2
) . . . d′(xcm

tm
, ydn

un
)


3.3 Match Score

The TCS distance function can be used to represent the
similarity between the target record and a compared
record. However, the distance can be a large number,
which users find difficult to compare. Hence, we nor-
malize the distance into a match score, ranging from
0.01 to 1.00. A higher score represents higher similarity.
Only records with zero distance will yield a score of
1.00. Let n be total number of records in the dataset. X
and Y are target and compared record, respectively. The
match score (M(X, Y )) is calculated from the following
equation:

D′max = Maxj∈[1,n]D
′(X, Yj) (6)

M(X, Yi) =

{
1.00 if D′(X, Yi) = 0

D′
max−D′(X,Yi)

D′
max

∗ .98 + .01 otherwise
(7)

3.4 Mismatch Score

When the number of events in two records are not equal,
there are missing or extra events. A missing event is an
event that occurs in a target record but does not occur in
a compared record. An extra event is an event that does
not occur in a target record but occurs in a compared
record. For example, imagine a target record for a patient
who has chest pains, followed by elevated pulse rate,
followed by a heart attack diagnosis. If the compared
record has only chest pains and heart attack diagnosis,
it has one missing event.

We count a number of mismatches (N(X, Y )), a sum of
number of missing or extra events in each category, and
normalize it into a mismatch score (MM(X, Y )), ranging
from 0.01 to 1.00. Only records with no mismatch events
will yield a score of 1.00.

Nmax = Maxj∈[1,n]N(X, Yj) (8)

MM(X, Yi) =
{

1.00 if N(X, Yi) = 0
Nmax−N(X,Yi)

Nmax
∗ .98 + .01 otherwise

(9)

3.5 Total Score

The match score and mismatch score are combined into total
score (T (X,Yi)) using weighted sum.

T (X, Yi) = w ∗M(X, Yi)+ (1−w) ∗MM(X, Yi); w ∈ [0, 1]
(10)
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Fig. 1. Overview of Similan - Similan consists of 4 panels: main, comparison, plot and control. Users can start from
selecting a target record from the main panel. After that, the main and plot panels give an overview of the similarity
search result. Users can rank all records using many ranking criteria provided. By clicking on a particular record, the
comparison panel will show relationships between that record and the target record.

The default value for weight (w) is 0.5. However, the
Similan interface allows users to adjust this weight by
themselves and see the results in real-time. (will be
discussed in section 4.5)

4 SIMILAN INTERFACE DESIGN

The final output of the TCS measure is a score which
represents the similarity between a pair of records.
However, the score alone does not help the users un-
derstand why records are similar or dissimilar. Also,
the TCS measure can be adjusted by many parameters.
Furthermore, one of the users’ goals is to find the
similar records from a database which contains multiple
records. Hence, a tool to assist the users to understand
the results, customize the parameters, and perform a
similarity search in a database is needed. To address
these issues, an interactive interface called Similan is
developed. Similan is written in C# .NET using the
Piccolo.NET [25] visualization toolkit. Similan provides

a visualization of the search results to help the users
understand the results, and an interface that facilitates
the searching process and parameter customization. The
key design concept of Similan follows the Information
Visualization Mantra [26] : overview first, zoom and
filter, details on demand.

4.1 Overview
Similan consists of 4 panels: main, comparison, plot
and control, as shown in Figure 1. Users can start from
selecting a target record from the main panel. After that,
the main and plot panels give an overview of the sim-
ilarity search result. Filtering and ranking mechanisms
help users narrow down the search result. Users then
can focus on fewer records. By clicking on a partic-
ular record, the comparison panel shows relationships
between that record and the target record on demand.
Moreover, mouse hovering actions on various objects
also provide details on demand in the form of tooltips.
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Fig. 3. Main Panel: Events are sorted by category and placed on range timeline, the time axis is binned into discrete
ranges. Ranking score are shown on the left. Records can be sorted by clicking the headers on the top. Zooming and
panning are possible using a range slider at the bottom.

Fig. 2. Range Timeline: Events are grouped by time
range. Range labels are placed on the top

Fig. 4. Control Panel: Select up to six interested cate-
gories. Numbers of events in each category are display in
the label. Click on the colored squares to customize color.

All panels are resizable which provides flexibility in
utilizing space. Results of any parameter adjustment are
displayed immediately.

4.2 Events and Timeline
Colored squares are used to represent events. Each color
represents a category. Currently, Similan allows a maxi-
mum of 6 categories. Users can check the checkboxes in
the control panel (Figure 4) to select up to six categories.
The number of events in each category are displayed
behind the category name to help users make their

decisions. Users can also customize the colors using a
control provided in the control panel.

Similan’s timeline is not a continuous timeline (see
Figure 2). This timeline is divided into time ranges. The
range interval is automatically calculated by the size
of application window and interval of the database. In
each time range, events are grouped by category and
categories are placed in the same order. Maintaining
the same order allows visual comparison between two
records (see main panel and comparison panel).

4.3 Main Panel
Each record is vertically stacked on alternating back-
ground colors and identified by its name on the left (see
Figure 1). Ranking scores appear on the left hand side
before the name (more detail about ranking score will
be explained in section 4.5). Events appear as colored
squares on the timeline as described in section 4.2. By
default all records are presented using the same absolute
time scale (with the corresponding years or month labels
displayed at the top) and the display is sized so that the
entire date range fits in the screen.

A double-click on any record sets that record to be
the target record. A target mark will be placed in front
of the target record instead of a ranking score. Click on
any record to select a compared record. Both the target
record and compared record will be highlighted. Users
can move the cursor over colored squares to see details
on demand in the form of tooltips. Also, zooming on the
horizontal axis and panning are possible using a range
slider provided at the bottom of the main panel.

4.4 Alignment
According to Wang et al. [1], alignment allows users
to perform tasks that involve temporal comparisons
relative to sentinel events. Sentinel events are important
events, e.g. heart attack, which are used as references.
The time in each record is recomputed, referenced from
the time that the sentinel event in each record occurs.
Similan adapts this idea by allowing users to align tem-
poral categorical events by sentinel category. Since there
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Fig. 5. Control Panel: Users can choose to align events
by selecting sentinel category.

Fig. 6. Relative Timeline: Time scale is now relative to
sentinel events (blue). Time zero is highlighted.

can be more than one candidate for the sentinel event in
the sentinel category, a candidate event which produces
the maximum score according to the TCS measure will
be selected.

Users can select a sentinel category from a drop-down
list as shown in Figure 5. By default, sentinel category is
set to none. When the sentinel category is selected, the
time scale will change from an absolute time, i.e. real
time, into a relative time. The sentinel event becomes
time zero. In the timeline, time zero will be highlighted,
as shown in Figure 6.

4.5 Rank-by-feature

Similan is inspired by the idea of rank-by-feature from
Hierarchical Clustering Explorer (HCE) [4]. Ranking cri-
teria are derived from the TCS measure proposed earlier
in section 3 of this paper. Whenever a target record has
been selected, the similarity measure will be calculated
for each record. The main panel then allows users to sort
records according to these ranking criteria:

1) Total Score
ranging from 0.01 to 1.00
as described in section 3.5. Total score is a weighted
sum of match and mismatch score. The weight can
be adjusted and see the result in real-time using a
slider and textboxes as shown in figure 7

2) Match Score
ranging from 0.01 to 1.00
as described in in section 3.3. We choose to dis-
play match score instead of distance because the

Fig. 7. Control Panel: Weight for calculating total score
can be adjusted using slider and textboxes.

distance is a large number, which can go up to 5-6
digits even for a small dataset. Since it is hard to
tell the difference between two large numbers and
to understand the distribution, Similan shows the
match score.

3) Number of Mismatches (#Mismatch)
ranging from 0 to n
as described in section 3.4. This is the total number
of missing and extra events. The number of mis-
matches is shown, instead of the mismatch score
because number of mismatches is a small number
and one unit of this number is more meaningful
than one unit of distance. Furthermore, we break
down the number of mismatches into categories.
Positive value means number of extra events while
negative value means number of missing events.

Users can click on the ranking criteria on the top to
sort the records. By clicking again the order is then
reversed. A triangle under the header shows current
ranking criterion. Legends in the control panel show the
range of each ranking score and how they are color-
coded, see Figure 1.

4.6 Plot Panel
In addition to displaying results as a list in the main
panel, Similan also visualizes the results as a scatterplot
in the plot panel (Figure 8). Records are represented by
+ sign on a scatterplot. Horizontal axis is the match
score while vertical axis is the number of mismatches
(#mismatch). Records in the bottom-left area are records
with high match score and low number of mismatches,
which should be considered most similar according to
the TCS measure.

Moving the cursor over a + sign will trigger a tooltip
to be displayed. Clicking on a + will set that record to
be the compared record and scroll the main panel to that
record. Users can also draw a region on the scatterplot
to filter records. The main panel will show only records
in the region. Clicking on the plot panel again will clear
the region and hence clear the filter.
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Fig. 8. Plot Panel: Records are placed on 2-dimensional space by their match score and number of mismatches.

Fig. 9. Comparison Panel: Solid lines are links with low distance. Dashed lines are links with high distance. Move
cursor over a link to see more detail.

Fig. 10. Control Panel: Links in comparison panel can be
filtered using this control.

4.7 Comparison Panel

The comparison panel is designed to show similarity and
difference between the target record and the compared
record. To maintain consistency, each record is displayed
exactly the same as in main panel. Lines are drawn
between pairs of events matched by the TCS measure
to show similarity and difference. Line style is used to
show the distance value. Strong links, or links with low
distance, are shown as solid lines. Weak links, or links
with high distance, are shown as dashed lines. Those
events without any links connected to them are missing
or extra events. Users can adjust the distance threshold
for strong links in the control panel, see Figure 10.
Moving the cursor over a link will display a tooltip

showing the event category, time of both events and
distance.

Furthermore, users can filter the links by using the
filters in the control panel (Figure 10). Users can filter
by setting the minimum and/or maximum distance. By
selecting link types, only the selected type are displayed.
Strong links are links with a distance in the range speci-
fied by the slider. Forward Links are links which are not
strong links and the event in target record occurs before
the event in compared record. Backward Links are the
opposite, links which are not strong links but the event
in the compared record occurs before the event in the
target record.

5 EVALUATION

A usability study for Similan was conducted with 8
participants. The goals in this study were to study the
learnability of Similan, assess the benefits of a scatterplot,
and learn how the number of events and categories affect
user performance. We also observed what strategies
the users chose and what problems they encountered
while using the tool. Synthetic data based on graduate
school academic events, such as admission, successful
dissertation proposal, and graduation, are used instead
of Electronics Health Records. This change was intended
to make the tasks more comprehensible and meaningful
to participants, who were technically-oriented graduate
students.

5.1 Usability Study Procedure
Two versions of Similan were used in this usability study.
One with full features (S-Full) and another without a
scatterplot (S-NoPlot). All usability sessions were con-
ducted on an Apple laptop (15 inch widescreen, 2.2 Ghz
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CPU, 2GB RAM, Windows XP Professional) using an
optical mouse.

5.2 Tasks
The study had two parts. In the first part, participants
had an introduction to the TCS measure and train-
ing with the Similan interface without a scatterplot (S-
NoPlot) for each participant. Then, the participants were
asked to perform these tasks:

1) Given a target student and dataset of 50 students.
Each student record has 2 categories of events and
the total number of events is between 4 to 6 events.
Find 5 students which are most similar to the target
student using S-NoPlot.

2) Given a target student and dataset of 50 students.
Each student record has 4 categories of events and
the total number of events is between 6 to 10
events. Find 5 students which are most similar to
the target student using S-NoPlot.

3) Given a target student and dataset of 50 students.
Each student record has 6 categories of events and
the total number of events is between 8 to 16
events. Find 5 students which are most similar to
the target student using S-NoPlot.

After that, participants were introduced to the scatter-
plot and how to use it. Then, they were asked to perform
these tasks.

4) Given a target student and dataset of 50 students.
Each student record has 2 categories of events and
the total number of events is between 4 to 6 events.
Find 5 students which are most similar to the target
student using S-Full.

5) Given a target student and dataset of 50 students.
Each student record has 4 categories of events and
the total number of events is between 6 to 10
events. Find 5 students which are most similar to
the target student using S-Full.

6) Given a target student and dataset of 50 students.
Each student record has 6 categories of events and
the total number of events is between 8 to 16
events. Find 5 students which are most similar to
the target student using S-Full.

The datasets used in task 1-3 and 4-6 are the same
but the students are renamed and the initial orderings
are different. Task 1 and 4 are used only for training
purpose. The results will be collected from task 2, 3, 5
and 6.

In addition to observing the participants behavior and
comments during the sessions, we provided them with a
short questionnaire which asked specific questions about
the Similan interface. Answers were recorded using a
seven-option Likert scale and free response sections for
criticisms or comments.

5.3 Results
For the first part of this 30-minute study, all participants
were observed to use the following strategy: first select

the target student, and then use the main panels ranking
mechanisms to rank students by the total score. In their
first usage, some participants also selected the student
who had the highest total score to see more detail in
the comparison panel. Afterwards, they just studied the
visualization and reported that these students with high
total score are the answers.

For the second part of the study, which focused on
the scatterplot, most of the participants were observed to
use the following strategy: first select the target student,
draw a selection in the plot panel, and then use main
panels ranking mechanisms to rank students by the
total score. However, a few participants did not use the
scatterplot to do the task at all. They used the same
strategy as in the first part.

Users spent comparable time on tasks 2 and 3 and on
tasks 5 and 6. There was no difference in performance
times between tasks 2 and 3 or between tasks 5 and
6, even though there were more events in tasks 3 and
6. This is understandable since participants reported
that they trusted the ranking criteria provided by the
interface. However, users spent more time doing the
tasks while using the scatterplot.

All of the participants trusted the total score ranking
criterion and used it as the main source for their deci-
sions. ”I am trusting the algorithm”, said one participant.
”The total score ranking function is very useful”, said
another participant. They explained that the visualiza-
tion in the main panel convinced them that the ranking
criterion gave them the correct answers. Therefore, in
the later tasks, after ranking by total score and having
a quick look at the visualization, they simply answered
that the top five are the most similar.

All of them agreed that the main panel is useful for its
ranking features. But when asking about the distribution
of the similarity search result set, the scatterplot became
more valuable. However, they had different opinions
about its usefulness in finding similar students. Some
of the participants mentioned that it was useful when
they wanted to find similar students. They explained
that the similar students can easily be found at the
bottom left of the scatterplot. One participant said that,
by drawing a selection on the scatterplot, she had to
choose two parameters (number of mismatches and match
score) while using the main panel, she only had to choose
one parameter (total score). Few of them even mentioned
that it is not necessary to use the scatterplot if they just
want to find some similar students. ”If I want to find
similar, just sorting is enough”, said one participant.

Although they had different opinions about its use-
fulness in finding similar students, they all agreed that
the scatterplot gives a good overview of the students’
distribution. It can show clusters of students which could
not be discovered from other panels. Also, one partici-
pant pointed out that the result and comparison panels
are helpful in showing how students are similar, while
the plot is more helpful in explaining how students are
dissimilar. The plot characterizes students with respect to
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the target student. However, one participant complained
that the student markers can overlap on the plot which
can be misleading in some situations.

Every participant mentioned that the comparison
panel is useful in showing the similarity between a target
student and a compared student.

Participants had positive comments on Similan sim-
ple, intuitive and easy to learn interface. Most of the
participants got started without assistance from the ex-
perimenter. Some participants clicked instead of double-
clicked until they were given help. One participant said
that she like the way the main panel, comparison panel
and plot panel are connected (coordinated).

Nevertheless, some user interface design concerns
were noted. One participant was not sure that the rank-
ing header could be clicked on. Another participant
noticed that the range timeline could be misleading in
some situations. One participant suggested adding some
visual effects to bring attention to the comparison panel
when users select a student from the main panel. He also
suggested drawing a guide box in the bottom left corner
of the scatterplot to show that this is a high similarity
area.

Overall, participants liked the simple but attractive
Similan’s interface and strongly believed that Similan
can help them find students who are similar to the target
student. Ranking in the main panel appears to be useful.
By contrast participants had difficulties in learning the
TCS measure, since it combines two kinds of scores. The
scatterplot did not benefit the tasks in this study but
we believe it may yet prove useful for more complex
databases.

6 FUTURE WORK

6.1 Similarity Measure

The TCS measure does not allow matching of events
between different categories. However, allowing match-
ing between different categories can make the similar-
ity measure become more flexible. This can be easily
achieved by adjusting the different type penalty (cur-
rently set to ∞) in equation 1. User interface features
can be added to help users specify penalty for matching
between different categories.

Currently, the TCS measure takes all missing and extra
events into account. In some situations, missing events
are not considered important but extra events are, or
vice versa. In a more complex situation, missing 1 of 2
events is not important but missing 2 of 2 events can be
considered critical. These issues have to be addressed.

Also, EHRs contains millions of records with patient
histories. Dealing with a large database is another chal-
lenging problem because of the polynomial nature of
the Hungarian algorithm. An improved algorithm to
calculate the similarity measure must be fast enough to
support large databases efficiently.

6.2 User Interface Design

Some user interface design issues in Similan need to be
addressed. Using range timeline can be misleading is
some situations. A pair of events in the same range can
have a longer distance than a pair of events in different
ranges.

Representing events in the same range and category
by one node provides a clean and simple interface. It
also allows easy comparison between records. However,
overlapping events need to be handled in a better way.

Similan allows users to sort by only one ranking
criterion at a time. An interface that allows users to sort
by many ranking criteria in a sequential order could be
added to make the interface more flexible.

7 CONCLUSION

This paper proposes a TCS measure, a novel similarity
measure for temporal categorical data. Briefly, the TCS
measure is a combination of time differences between
events, and number of missing and extra events.

We also introduces Similan, an interactive tool that fa-
cilitates similarity searching and search results visualiza-
tion for temporal categorical data. The alignment feature
allows users to pre-process the dataset by aligning events
by a sentinel category. Users are allowed to rank the
temporal categorical records by many ranking criteria
derived from the TCS measure. The scatterplot provides
an overall distribution of search results. The drill-down
approach allows users to explore by selecting a region on
the scatterplot. The comparison panel provides advanced
exploration of relationships between records.

A usability study has been conducted to evaluate the
interface. The Similan interface was comprehensible to
users but they had a harder times understanding the TCS
measure. Users expressed strong opinions that Similan
can help them find similar records from temporal cate-
gorical data.
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