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ABSTRACT

The GPS location of a mobile device often corresponds to its owners
location and is thus restricted to mobile apps which the user explic-
itly grants access permission. Meanwhile, real-time vehicle tracking
for public transportation systems is increasingly available to the
public in cities and many large universities. Using one such vehicle
location API, we demonstrate a new side-channel localization at-
tack by which a victim can be precisely geolocated if nearby buses
from a public transit system can be detected by a malicious app. To
evaluate this attack, we conduct 60 experiments of 200 localization
attempts each across two regions (a large city and a university).
We find that within half an hour, depending upon the capabilities
of the bus detection method used, up to 39% of victims near a bus
route can be located to within 20m of their exact location in either
region. Using a simple early stopping heuristic, we also find that
the time to detect some victims can be reduced to approximately
16 minutes with little degradation in localization accuracy.

1 INTRODUCTION

A person’s location at any given time is often regarded as private
information that should not be accessible by arbitrary third parties
without permission. This general rule is enforced in both Android
and iOS mobile devices, which require users to explicitly grant lo-
cation information access to any downloaded mobile apps desiring
either the device’s GPS location or a coarse location estimate based
on cellular or WiFi connectivity. They additionally notify users
constantly when their location information is being accessed by
such applications. Therefore, a means of undetectably and accu-
rately determining a user’s location via their mobile device without
explicitly requesting it is a dangerous violation of user privacy.
Multiple side-channel attacks have been presented for this purpose,
using seemingly innocuous permissions such as device battery life
or accelerometer readings to locate a victim user [10, 14].

In this work, we propose a novel approach for covert user lo-
cation inference by detecting a user’s proximity to public transit
vehicles in an outdoor environment. Real-time vehicle tracking for
public transportation systems has increasingly become available
to the public through APIs such as NextBus or MTA Real-Time
Data Feeds [1, 2]. Additionally, some transportation systems have
deployed WiFi access points on public buses [9, 18]. Based on these
developments, we advance that a user in a city sized area can be
precisely geolocated by a malicious app on his or her mobile phone
given permission to access a device sensor that could be used to
detect nearby buses, such as the device’s microphone or WiFi state.
Indeed, buses are louder than normal traffic, and recent works clas-
sifying cityscape sounds have demonstrated that the sounds of
buses, trains, or cars can be distinguished relatively easily by audio
classifiers [7, 8].

To test this theory, we design a Bayesian localization method
that combines “bus” or “no bus” observations extracted covertly
from a victim user’s mobile device with downloadable real-time bus
locations to determine the most likely location of the victim in a city-
sized area. We pair this localization method with simulated nearby
bus detectors (classifiers) of varying detection range, precision, and
sensitivity to locate victims within a large university environment
and within the city of San Francisco, and we examine how the
quality of the bus classifier affects localization success in both
regions. We find that after using this method for half an hour,
between 16% and 39% of victims near a bus route within UMD can
be located to within 20m of their exact location depending upon
the bus detection method used, and 28.5% to 69.5% can be located
to within 80m of their exact location. For the larger area of San
Francisco, 10% to 30.7% of victims can be located to within 20m of
the correct location, while 12% to 54.2% can be located to within 80m.
Additionally, we find that applying a simple early stopping heuristic
to the method can often provide victim location predictions in 15
to 16 minutes with minimal impact on prediction accuracies.

2 RELATED WORK

Our work bridges the gap between legitimately useful context-
aware localization applications and malicious side channel attacks
which attempt to use non-GPS sensors to locate users. One example
of a context-aware system is SurroundSense [5], which integrates
ambient noise, accelerometer data, light, and image measurements
to identify which room a user is in when indoors. Ambient noise
is also used for indoor localization in a number of other studies
to perform Time Difference of Arrival (TDOA) localization [6, 11,
12]. However, these techniques have been sparingly applied to
city-sized outdoor environments and rely on physically deploying
multiple devices which produce sounds at predetermined times in
the environment to be effective. Other studies locate users based on
the variance or change of signal strength from nearby WiFi access
points or GSM cell towers [4, 13, 15, 17].

Because many devices have defenses or permission systems in
place to restrict access to GPS or signal strength measures without
consent from the user, covertly geolocating a user is a challeng-
ing problem. Still, there are many creative and effective solutions.
Zhou et. al explore a wide variety of attacks for locating users
with Android devices without acquiring any privileged device per-
missions [19]. In one interesting example, the authors are able to
determine the driving route of a user based simply on whether the
isMusicPlaying variable is enabled or disabled due to instruction
dictation from the Google Maps app. Another attack tool, “Pow-
erspy”, combines power usage fingerprints for an area and aligns
them with extracted aggregate power usage from a victim’s phone
to determine which route the victim is on [14]. A similar method
is employed by the ACComplice attack, which uses accelerometer
data correlated with public map data to infer a user’s outdoor route



[10]. At the time of this writing, no special permissions are needed
to access the accelerometer; the malicious app only needs to obtain
network privileges in order to send the accelerometer data to the
attacker.

Side-channel localization attacks rely on the assumption that a
victim user has already downloaded a malicious app to their mobile
device. Researchers have estimated the proportion of malicious
Android apps to be as high as 0.5% [20], which is non-negligible
considering the millions of potential victims with Android phones.
An example of an malicious app which could provide the sensor
readings necessary for the previously mentioned attacks is Sound-
comber [16]. This malware app acts as a trojan horse which se-
lectively detects sound to identify PIN and phone numbers based
on the tones they produce when pressed. Results of these studies
justify the assumption that users may download malicious applica-
tions which would allow the previously mentioned (and currently
proposed) attacks to be performed.

Our work is most similar to the side-channel attack studies,
but also incorporates some of the modeling techniques from the
context-aware systems. The main limitation of prior side-channel
localization attacks is the need for a “training phase” in which the
attacker manually collects measurements at different locations in
the target region. For example, Powerspy [14] requires manually
measured power usage data to be collected by the attacker for
several routes in an area. The only training phase necessary for
our project is an empirical test of the bus detector, which can be
performed once in virtually any location and will then work in
any target region with a public bus system providing live vehicle
location APIs.

3 LOCALIZATION VIA NEARBY BUSES
3.1 Threat Model

We first assume that the victim downloads a malicious app created
by the attacker to their mobile device. The app has no permission
to access the device’s GPS location or any other information that
leads to an easy location estimate such as nearby cell towers. The
app only requires network access to communicate with the attacker
through a remote server and access to a device permission which
could be used to detect a nearby bus. Some example permissions
we believe could be used include microphone access to detect the
sound of buses or WiFi state access to detect WiFi enabled buses
by their access point SSIDs. The first goal for the attacker during
a localization attempt is to use the bus detecting permission as
a classifier which determines if the victim is near a bus or not
at fixed intervals over time. To do so, the app runs the classifier
continuously in the background of the device, relaying whether a
bus is detected or not to the attacker periodically. We assume that
the victim is stationary for the duration of the localization attempt,
but we believe our method could be extended to locate a mobile
victim as well.

We next assume that the attacker has access to a public transit
vehicle tracking API for the area in which the victim is believed to
be. From the remote server, this API can be used to query the current
locations of the transit system’s buses in real time. Using “bus” or
“no bus” outputs from the app’s nearby bus classifier along with the
APP’s live bus location information over time, the attacker attempts

to predict the victim’s location in the area. The attack is thus limited
to areas with transit systems that make vehicle locations publicly
available, but such services are often available in large to medium
sized cities and universities [3]. The attack is also limited in that
victims who are not near bus routes cannot be located; a victim
whose phone never hears a bus during the localization attempt
could be in any location not near bus routes with equal probability.
On the other hand, we show that a victim who hears even a single
bus at one time interval may be correlated to a specific position
over time.

3.2 Localization Methodology

Given this threat model, we reduce locating the victim to identify-
ing their most likely position in an area given a series of “bus” or
“no bus” observations from the app and live bus location informa-
tion. We first model the city sized area in which the victim resides
as a grid of equally sized square cells and create a distribution of
probabilities (beliefs) that the victim is in each cell which is ini-
tially uniform. We then approach the problem as an instance of
bayesian modeling where we seek to find the position of the victim
X at time ¢ to maximize P(X|b;...b;) where b;...b; is the sequence
of bus observations of the form “bus” or “no bus”. Using Bayes’

rule, this can be written as P(X|b;...b;) = Plby |)2(12(1>-<.|.1;1t.)..b:4),

and because P(b;...b;) does not affect the maximization, we can
write P(X|b;...b;) = cP(b¢|X)P(X|b1...bs—1). This gives us the ba-
sic Bayesian update rule for new evidence: for each periodic app
classification, for every cell in our distribution, we simply update
the probability that the victim is in the cell by multiplying the cur-
rent probability that the victim is in the cell by the probability of
the evidence given the distance from the cell to the nearest bus
(as is revealed by the public bus tracking APIs). After each step,
we normalize the cell probabilities so that they sum to 1. After a
sufficient number of app readings (defined by either a time limit or
a when maximum probability threshold is reached), the cell with
the highest probability is predicted as the victim’s location!.

The question remains how to calculate the probability of ob-
serving a bus from a given cell in order to perform this update. In
practice, this depends on the quality of the ‘bus”, “no bus” classifier,
which is likely a function of the distance to the closest bus. Rather
than creating and testing a specific classifier, we simulate classifiers
of varying performance to determine our Bayesian localization
method’s usefulness when paired with different classifiers.

4 EXPERIMENTS

We next describe how we test our localization method. Instead
of implementing a malicious app and attempting to localize test
victims in real time, our experiments simulate these victims and
attempt to localize them using saved bus location data in order
to run the experiments more quickly. We answer the following
questions with our experiments:

!While this simple update method was ultimately used, we also implemented a Monte
Carlo particle filter which has a runtime linear in the number of particles instead of
linear in the number of cells. However, the “direct” Bayesian model described above
did not take very long to compute even for San Francisco (a few seconds per iteration
on commodity hardware), so we elected to use this simple method instead.
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Figure 1: These maps correspond to the two areas in which we attempt to localize simulated victims, The University of Mary-
land and San Francisco. Red squares on these maps indicate the GPS locations of buses in each area at two uniformly selected

times from the recorded range.

» <«

e Given different ‘bus”, “no bus” classifiers, how often can
our method locate a victim near bus routes in a given area,
and with what accuracy?

e How does varying the bus detection range, false nega-
tive rates, and false positive rates of classifiers affect the
method’s localization accuracy?

e Can victims be located quickly without hurting localization
accuracy?

4.1 Regions Tested

We seek to measure the localization accuracy of our method in
two different environments: a large university with a modest local
bus system and a large city with a vast bus fleet. We therefore
choose to run our experiments over the regions of the University of
Maryland, College Park (UMD) and San Francisco, California, both
of which have bus systems using the NextBus API [2]. For each

Max Detection Distance (False Positive, False Negative)
Rates
[20, 40 ,60] [(0,0)]
[20, 40 ,60] [(0.01, 0), (0.05, 0), (0.1, 0)]
[20, 40 ,60] [0, 0.05), (0, 0.1), (0, 0.2)]
[20, 40 ,60] [(0.01, 0.05), (0.05, 0.1), (0.1, 0.2)]

Table 1: Values of classifier attributes which are varied
across modeled classifiers for each testing region. Max dis-
tances are crossed with false positive, false negative rate tu-
ples to create classifiers for each experiment.

region, we first recorded the location (latitude and longitude) of
every bus every ten seconds between Friday, 6:00am EST 04/21/17 to
Saturday, 3:00am EST 04/22/17 by querying the NextBUS API Bus
locations between these times thus represent a typical weekday bus
schedule which we use as a model for weekday bus activity. We also
used the API to get the route information for each region: granular
sets of GPS locations which buses on each route drive over. Using
this route information, we define a 2D grid representing each region.
Each grid is comprised of square cells 20 meters in length. These
grids initially contain all locations that the buses may drive over
(derived from the bounds of the route information), but we scale
them down to exclude portions of each region where buses rarely
travel. The final grid for the University of Maryland represents a
2.43km? (0.93 mi?) area, while the grid for San Francisco represents
153.38km? (59.22 mi%). The bounds of these grids are displayed in
Figure 1.

4.2 Classifier Modeling

As previously mentioned, we neither aim to create a classifier for
detecting buses in this work nor aim to test such a classifier in
the field as part of the localization technique. We instead model
multiple classifiers, varying the max distance each one can detect a
bus, its false positive rate, and its false negative rate. By doing so,
we can observe the performance of our localization method when
paired with classifiers of varying bus detection distance, precision,
and sensitivity. Table 1 shows the values of these variables we chose
to sample when modeling classifiers. For instance, a classifier with a
max detection distance of 40m will fail to report hearing a bus when
one is 50m away during a simulation, while a classifier with a 0.2



Region Max Distance | Cells Covered | Total Cells | Proportion Covered
UMD 1 2347 6,080 0.386
UMD 2 3597 6,080 0.592
UMD 3 4508 6,080 0.741
San Francisco 1 21,559 383,460 0.056
San Francisco 2 45,416 383,460 0.118
San Francisco 3 72,915 383,460 0.190

Table 2: Proportion of cells sampled from for experiments based on classifier max detection distance. This proportion repre-
sents the percentage of each region’s cells in which a victim could theoretically be located by this method given a bus detector

with each max distance.

false negative rate will fail to detect a bus in range with probability
0.2. We ultimately test 30 classifiers for each region for a total of 60
experiments.

4.3 Localization Experiments

For each simulated classifier, we run an experiment of 200 simulated
localization attempts in each region. For each simulation, we first
sample a random location in the grid along a bus route to place a test
victim. This location is either in a cell that a bus drives through or
within 1-3 cells of such a cell depending upon the maximum distance
within which the modeled classifier can detect a bus. The percentage
of total cells in a region which are sampled from depedning on the
max detection distance can be found in Table 2. We next choose a
random time within the 21 hours of recorded bus data to start the
simulation, each of which lasts for half an hour. Every consecutive
ten seconds after the start time, the corresponding saved bus data is
used to place buses within the grid. The victim relays whether or not
a bus is detected based on the classifier used, and this observation
is used to update the probability that the victim resides at each cell
in the grid. At each such step, we record whether a bus is observed,
the cell which the victim most likely resides in according to the
method, and the corresponding probability that the victim resides
in that cell. The cell with the highest probability in the grid at the
end of the simulation is treated as the predicted location of the
victim.

5 RESULTS AND DISCUSSION

The full results of our 60 experiments can be viewed in Table 3 and
Table 4 in Appendix A. We measure the success of each experiment
in terms of the difference between the actual location of the victim
and predicted location at the end of the half hour simulation.

5.1 Performance with Perfect Classifiers

First, experiments were conducted assuming perfect classifiers, i.e
classifiers that produce no false negatives or false positives when
detecting nearby buses. Though perfect bus detection may not be
realistic, these experiments serve as an upper bound for how this
localization method can perform. For each region, perfect classifiers
with maximal bus detection ranges of 1, 2, and 3 cells away (20m,
40m, and 60m respectively) from the current cell were simulated.
Figure 2(a) displays the cumulative distribution functions of these
classifiers’ localization accuracies for each region up to 5 cells
away from the victim’s real location. We do not show localization

performance past this limit as we feel any localization predictions
more than 5 cells away from the victim’s real location, a 100m or
greater error, are not useful for localization.

The dashed horizontal lines in these CDFs indicate the propor-
tion of simulations per experiment in which at least one bus passes
the victim during the simulation, indicating the total proportion of
victims which the method can be expected to locate. It’s important
to note that in a number of simulations, the victim was never passed
by a bus. These victims are impossible to locate given that many
cells in each simulation are never passed by a bus, leaving many
equally likely cells in which the victim may reside. In practice, any
classifier which provides a negligible number of false positive detec-
tions would allow the attacker to distinguish such situations during
a localization attempt and choose not to use whatever location
prediction is returned by the method. In our experiments, we can
observe that for a classifier with maximum detection distance of
20m or 40m outside of the current cell, roughly half of all localiza-
tion attempts fail completely due to the victim never being passed
by a bus for both UMD and San Francisco. When the classifier max-
imum detection distance is increased to 60m outside the current
cell however, 70% of victims are locatable in both regions. Running
longer simulations may increase these percentages as buses have
more time to pass victims.

For both regions, we see that between 21% and 26% of victims
can be exactly located to within a 20m x 20m cell by this localiza-
tion method when it is paired with a perfect classifier of maximum
detection distance 20m or 40m. 39% of UMD victims can be exactly
located by a classifier with a maximum detection distance of 60m,
while only 23% of San Francisco victims can be. We find that for
the UMD experiments, nearly all locatable victims can be local-
ized to within an 80m radius of their actual position as the CDF
lines approach the dashed line performance limits signifying the
proportion of localizable victims. For San Francisco however, the
CDFs fail to approach these performance limits. This failure likely
originates from the size disparity between UMD and San Francisco.
For the University of Maryland simulations, the method must nar-
row down the victim’s location within 6,080 cells to only one likely
location; for San Francisco, the grid is 383,460 cells. This area is
over 63 times larger than UMD, and even though San Francisco has
a higher number of buses on the road, it has a much lower number
of buses per square kilometer compared to UMD.
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Figure 2: CDFs of localization accuracy for select experiments.

5.2 The Effects of False Negatives

We next explore the effect of false negatives on the effectiveness of
our methodology. We hypothesized that our localization method
would be fairly resilient to false negatives because of the high rate
of observations polled from the victim (every 10 seconds). It is
often the case that when a bus is nearby the victim, it can be de-
tected in multiple consecutive observations, especially by classifiers
with larger detection distances. As such, even if one observation
falsely reports that no bus is nearby, if following iterations correctly
observe the bus, the error will be almost immediately corrected.
We also believe these experiments might be representative of the
performance than a classifier using nearby WiFi SSIDs to detect
buses may achieve in practice. While false negatives may occur due
to obstacles blocking the WiFi signal near a victim, false positive
errors should not occur if bus WiFi access points have SSIDs easily
distinguishable from other WiFi networks.

Classifiers with false negative rates of 0.05, 0.1, and 0.2 yet no
false positives were modeled for each maximum detection distance
for each region. Figure 2(b) shows the localization accuracy CDFs
for these experiments with the maximum detection distance fixed
at 3 cells to allow for sole observation of the effect of varying false
negative rates. We first observe that false negative rates of 0.05
and 0.1 appear to shift UMD localization performance down by
roughly 5% at each accuracy level. However, increasing the false
negative rate from 0.1 to 0.2 in this region or in San Francisco
yields virtually no decrease in localization accuracy, suggesting
some method resiliency to further increases in this rate. The trends
described here and in following analyses hold for classifiers with
lower detection distances, but are omitted for brevity.

5.3 The Effects of False Positives

We next modeled the effect of false positives on victim localization.
We hypothesized that false positives would be more damaging to



the localization accuracy than false negatives. This is because in
each half hour simulation, less than 5 unique buses are observed
on average in either region, so there is far greater opportunity
for false positives to occur compared to false negatives over the
simulation lifetime. We thus modeled classifiers with lower false
positive rates of 0.01, 0.05, and 0.1 yet no false negatives for each
maximum detection distance for each region. Figure 2(c) shows
the localization accuracy CDFs for these experiments with the
maximum detection distance fixed at 3 cells as before.

For UMD, we see an immediate performance impact when the
false positive rate is set at just 0.01. Both rates of 0.01 and 0.05 seem
to have similar effects on performance, lowering the proportion of
simulations which achieve exact localization by 5-8% and lowering
the proportion of simulations predicting a location within 80m of
the victim by roughly 10%. A higher rate of 0.1 greatly decreases
within 80m accuracy compared to a perfect classifier, dropping the
cumulative proportion of simulations achieving that accuracy by
20%. These patterns hold for San Francisco as well, save for the
experiment with a false positive rate of 0.01 which performs no
differently than a perfect classifier.

Comparing these CDFs to those for false negatives, it appears
false positive rates of 0.05 or 0.1 overall have only a slightly worse
effect on localization accuracy than false negative rates of the same
values. We theorize however that increasing false positive rates to
0.2 as we tested for false negatives would continue to degrade local-
ization performance based on our observations, whereas increasing
false negative rates from 0.1 to 0.2 had little effect in either region.

5.4 Classifiers with False Negatives and
Positives

We finally model classifiers with both non-zero false positive and
false negative rates. Figure 2(d) displays the localization accuracy
CDFs for the 3 increasingly imperfect classifiers we test in both
regions compared to the perfect classifier baseline, again fixing
the maximum detection distance at 3 cells. For UMD, we see that
increasing the false positive rate to 0.01 and false negative rate to
0.05 immediately causes significant accuracy loss. A classifier with
these low error rates locates 10% less victims to their exact location
and 12% less within 80m than a perfect classifier. Increasing error
rates further continues to decrease overall performance.

For San Francisco, we strangely see that a classifier with a 0.01
false positive rate and a 0.05 false negative rate appears to perform
similarly to the worst one we model with rates of 0.1 and 0.2 re-
spectively. We believe this is due to a surprisingly large percentage
of simulations for the (0.01, 0.05) classifier in which a bus never
passes the victim, which shifts the CDF for this experiment down-
wards. Only 59% of simulated victims were passed by a bus in that
experiment, whereas close to 70% of simulated victims were within
range of a bus for each of the other experiments. We thus view this
experiment as an outlier for how a classifier with error rates of 0.01
and 0.05 and a max detection distance of 3 cells would perform and
believe running the experiment again would produce a CDF shifted
upwards by roughly 10%.

This experiment aside, we see from the other San Francisco CDFs
that classifiers with error rates of (0.05, 0.1) or (0.1, 0.2) negatively
impact localization performance as they do in UMD compared

to a perfect classifier. In fact, the worst imperfect classifier only
achieves roughly half the localization accuracy of a perfect classifier
in either region. It is clear then from these experiments that an
attacker implementing a covert bus detection mechanism within a
malware app should strive to reduce both false positive and false
negative rates as much as possible to avoid significant localization
accuracy loss.

5.5 Faster Localization

We next examine how quickly victims can be localized with this
method. Recall that our experiment simulations simply returned
the most probable location of the victim after half an hour of obser-
vations. We do not evaluate how waiting for further observations
might affect localization accuracy, but we believe that longer ob-
servation periods will only increase the number of victims who
are passed by a bus and lead to increased localization accuracies.
Instead, we explore whether some victims can be located faster than
after 30 minutes using an early stopping heuristic. It’s important
to note that an aggressive early stopping heuristic may hurt the
method’s localization accuracy, returning victim location predic-
tions which may have been improved upon by waiting for further
observations. We thus choose a conservative heuristic; if a cell in
the region grid reaches a probability over 0.5, (meaning that cell
has a greater probability than all other cells in the grid combined)
that cell is immediately returned as the victim’s predicted location.

By saving the cell with the highest probability in the grid along
with that probability in each simulation, we can retroactively apply
our early stopping heuristic to all simulations to observe its effects
on localization time and accuracy. We find that of the 3207 simu-
lations with locatable victims in UMD experiments, 1102 (34.7%)
could stop early via this heuristic. The average stopping time for
these simulations was 16 minutes and 10 seconds, a nearly 50%
time decrease. Only 57 early stopped simulations (5.1% of them)
return a prediction which is worse than the prediction otherwise
returned at the end of the half hour. We find similar results for San
Francisco. For the 3228 simulations with locatable victims in those
experiments, 966 (30.1%) could stop early. The average stopping
time for these simulations was 15 minutes and 27 seconds. Here 89
early stopped simulations (8.9% of them) return a worse prediction.
For both regions then, we find that over 30% of simulations in which
a bus passes the victim can be stopped after 15 or 16 minutes using
our heuristic, causing a loss in localization accuracy in less than
10% of them. We therefore believe this heuristic could be used in
practice, but leave open the possibility for better early stopping
criteria to be developed.

5.6 Defenses

This localization method inherently relies upon the ability to lever-
age publicly available APIs to retrieve the real-time locations of
public transit vehicles. Removing public access to such an API would
thus defeat the attack, but it would also prevent transit system users
from learning where buses are. Requests to an API might instead
be rate limited to prevent constant bus location downloads by an
attacker, but an attacker with multiple IP addresses could balance
requests around these limits to evade this defense. We nonetheless
believe that vehicle location API providers can limit data available



to an attacker to defeat this attack. We first recommend that bus lo-
cations not be updated at a high frequency. If bus locations are only
updated every 30-50 seconds, it would be difficult for an attacker to
pinpoint where any bus truly is at a given time to accurately update
the region grid. Additionally, we recommend that other information
which could be used to guess a bus’s exact location based on other
information be removed or have noise added. For example these
APIs often report the time it will take a bus to reach the next stop
on a route and the bus’s speed. Ensuring that bus arrival estimates
have low granularity (in minutes instead of seconds) and not re-
porting each bus’s current exact speed and heading would make it
more difficult for attackers to extrapolate bus positions from 30+
second old location information.

User diligence in preventing malicious applications from access-
ing unneeded permissions may also limit this and similar side-
channel attacks. Users often do not understand the significance
or functionality of permissions that apps request (Felt et al), so
greater user education may prevent the proliferation of malicious
apps which take advantage of excessive permissions.

6 CONCLUSION AND FUTURE WORK

Our experiments demonstrate that the ability to covertly detect
when buses are nearby a stationary smartphone user is often enough
information to locate the user within a city or university with a
bus tracking API Our localization method was able to locate the
majority of simulated victims who were passed by at least one bus
to within 80m of their actual location in all experiments, even those
with relatively high false negative and false positives rates. More-
over, on average 26% of UMD victims and 22% of San Francisco
victims could be located to their exact 20m by 20m area across all
experiments. We find that modest false negative and false positive
error rates in bus detection will degrade localization accuracy, but
they do not prevent localization altogether. Additionally, victims
can sometimes be located as quickly as in 15 to 16 minutes using a
coservative early stopping heuristic.

In the future, we aim to explore whether non-stationary victims
can be localized with similar degrees of accuracy. We also believe
our experiment results warrant the creation and testing of real
malicious bus detecting smartphone apps. There is also room for
future work to define better early stoppage heuristics. Lastly, we
are interested in exploring if leveraging a combination of public
vehicle tracking APIs can be used to improve localization.
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APPENDIX A FULL EXPERIMENT RESULTS

The tables on the following pages detail the localization accuracies
achieved in each experiment we conducted. Each row corresponds
to an experiment, with the first three columns listing the classifier
parameters chosen for the experiment. The Proportion Passed by
Bus column denotes the percentage of simulated victims who could
have been localized in each experiment given that a bus passed them
at some point during the simulations. The final columns denote the
percentage of victims who were located to within a certain distance
from their actual location, similar to the CDFs in Figure 2.
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False False Prop. Prop. Prop. Prop. Prop.

Ma)]()l?etect Positive Negative Passed by Exactly Within 1 Within 2 Within 3
ist. Rate Rate Bus Correct Cell Cells Cells
1 0.00 0.00 0.46 0.22 0.31 0.41 0.41
1 0.01 0.05 0.46 0.31 0.37 0.42 0.42
1 0.01 0.00 0.49 0.26 0.32 0.44 0.44
1 0.05 0.10 0.46 0.20 0.27 0.35 0.35
1 0.05 0.00 0.48 0.28 0.35 0.41 0.41
1 0.10 0.20 0.47 0.20 0.25 0.29 0.29
1 0.10 0.00 0.46 0.23 0.29 0.35 0.35
1 0.00 0.05 0.53 0.27 0.39 0.48 0.48
1 0.00 0.10 0.49 0.26 0.37 0.46 0.46
1 0.00 0.20 0.44 0.28 0.37 0.42 0.42
2 0.00 0.00 0.49 0.26 0.38 0.47 0.48
2 0.01 0.05 0.47 0.27 0.35 0.43 0.43
2 0.01 0.00 0.53 0.31 0.38 0.50 0.51
2 0.05 0.10 0.47 0.24 0.31 0.38 0.40
2 0.05 0.00 0.48 0.28 0.34 0.46 0.46
2 0.10 0.20 0.47 0.16 0.20 0.28 0.29
2 0.10 0.00 0.46 0.23 0.31 0.40 0.40
2 0.00 0.05 0.40 0.20 0.27 0.38 0.39
2 0.00 0.10 0.47 0.23 0.33 0.43 0.43
2 0.00 0.20 0.51 0.23 0.35 0.44 0.46
3 0.00 0.00 0.71 0.39 0.48 0.61 0.70
3 0.01 0.05 0.64 0.30 0.40 0.49 0.58
3 0.01 0.00 0.66 0.33 0.46 0.56 0.63
3 0.05 0.10 0.62 0.27 0.36 0.43 0.53
3 0.05 0.00 0.69 0.36 0.47 0.53 0.62
3 0.10 0.20 0.66 0.22 0.30 0.37 0.45
3 0.10 0.00 0.67 0.31 0.38 0.49 0.55
3 0.00 0.05 0.69 0.34 0.43 0.55 0.65
3 0.00 0.10 0.63 0.26 0.40 0.49 0.55
3 0.00 0.20 0.65 0.26 0.40 0.49 0.57

Table 3: UMD Full Experiment Results



False False Prop. Prop. Prop. Prop. Prop.

Ma)]()l?etect Positive Negative Passed by Exactly Within 1 Within 2 Within 3
ist. Rate Rate Bus Correct Cell Cells Cells
1 0.00 0.00 0.49 0.26 0.31 0.34 0.34
1 0.01 0.05 0.23 0.15 0.19 0.19 0.19
1 0.01 0.00 0.54 0.27 0.30 0.35 0.35
1 0.05 0.10 0.24 0.16 0.18 0.18 0.18
1 0.05 0.00 0.49 0.25 0.30 0.33 0.33
1 0.10 0.20 0.16 0.10 0.12 0.12 0.12
1 0.10 0.00 0.54 0.23 0.27 0.30 0.30
1 0.00 0.05 0.52 0.25 0.31 0.34 0.34
1 0.00 0.10 0.51 0.23 0.26 0.31 0.32
1 0.00 0.20 0.50 0.21 0.24 0.29 0.29
2 0.00 0.00 0.54 0.24 0.31 0.39 0.41
2 0.01 0.05 0.52 0.22 0.25 0.35 0.35
2 0.01 0.00 0.49 0.18 0.26 0.34 0.36
2 0.05 0.10 0.55 0.28 0.34 0.38 0.38
2 0.05 0.00 0.50 0.21 0.27 0.34 0.34
2 0.10 0.20 0.49 0.16 0.21 0.30 0.30
2 0.10 0.00 0.54 0.20 0.25 0.36 0.36
2 0.00 0.05 0.51 0.23 0.32 0.39 0.41
2 0.00 0.10 0.56 0.27 0.32 0.41 0.43
2 0.00 0.20 0.56 0.25 0.33 0.40 0.41
3 0.00 0.00 0.70 0.23 0.36 0.46 0.54
3 0.01 0.05 0.59 0.17 0.24 0.33 0.40
3 0.01 0.00 0.70 0.23 0.36 0.46 0.54
3 0.05 0.10 0.69 0.31 0.39 0.44 0.50
3 0.05 0.00 0.73 0.27 0.32 0.40 0.48
3 0.10 0.20 0.68 0.21 0.26 0.31 0.37
3 0.10 0.00 0.69 0.18 0.25 0.35 0.41
3 0.00 0.05 0.69 0.23 0.34 0.45 0.52
3 0.00 0.10 0.64 0.24 0.31 0.41 0.47
3 0.00 0.20 0.64 0.21 0.35 0.41 0.46

Table 4: San Francisco Full Experiment Results
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