Ubiquitous Computing CMSC 8182, Fall 2003 Aleks Aris
Prof. Ashok Agrawala aris@cs.umd.edu

Ubiquitous Computing

Computer techndogy continuowsly advances and it enters people’s lives more and
more & they get better and we can perform certain tasks faster with them, or can perform
certain tasks automatically. The eistence of computers is due to people because people
creded them and people are using them. Computer techndogy and computers probably
wouldn't have a meaning in whatever they do withou people's needs for them either
diredly or indirectly. We may benefit from computers diredly when their benefits are
diredly due to them such as using a word processor to accomplish our tasks (e.g. writing a
report or paper), while we can benefit indiredly when we eventually get benefits due to
having computers processng tasks for us but the cnrection is nat that obvious. For
instance, some products IKEA sdlls are dhegoer due to computers because with the help of
computers certain tasks in production require lesseffort.

Humans and computers together could be viewed as a system, where they affed one
another. Ubiquitous computing® (ubicomp, for short, as Weiser uses it in [18]) is about
computers everywhere surroundng humans, communicating with ead oher and
interading with people in certain ways. One of the main goals of ubiquitous computing is
that it neals to be distraction-free. The research group for the Aura project [14] developed
at Carnegie-Méellon University (CMU) claims the importance of this as foll ows “ The most
predous resource in a @mputer system is no longer its procesor, memory, disk or
network. Rather, it is a resource not subjed to Moore's law: User Attention.” in [15].
Rus=ll and Weiser also agreethat user attentionis the scarcest resource[11].

Computing is a techndogy and acwording to Mark Weiser, who is known as the
father of ubiquitous computing due to initi ating researcch work at Xerox Palo Alto Research
Center (PARC) in 1988[18], the most profoundtechndogies are those that disappea [21]
as he states in his ®minal paper. According to him, “writing” is aready atechndogy that
disappeas. We no longer think about the symbals, or concentrate on the shapes of letters. It
is natural for us to write & we think. The detail s of writing, or the overhead, which are the
seledion d symbadls, their shape, position al are irrelevant to the task, namely to the
thoughts that we ae going to express through writing. Writing is © pervasive; it is
everywhere, shop rames, onthe books, on some sticky note that is attached to a wall, on
papers, books, and magaznes, even in small things such as candy wrappers. Its prevalence
is due to its profoundress, it offers © much than it requires and thisis largely because the
irrelevant detail s to the task “disappear” (writing can probably be stated to be an automatic
process [2] that consumes no attentional resources of a person after enough pradice).

Mark Weiser contrasts the techndogy of writing with that of computers at then
(1991 and states that computers are in a world on their own and makes an analogy to the
era when writing was a bulky process as in order to write, there were scribes that would
make ink and keke day. Weiser notes that the “disappeaance” concept also exists in other
famous people’s minds in dfferent terms: nobelist Herbert A. Simon cdls it “compiling”;
philosopher Michad Polanyi cdls it the “tacit dimension’; psychologist J.J.Gibson cdls it
“visua invariants”; and phil osophers Gadamer and Heidegger call it the “horizon” and “the
ready to hand’ [21]. Weiser believes that computers shoud aso vanish in the backgrourd

! also known as Pervasive Computing

Ubiquitous Computing CMSC 8182, Fall 2003 Aleks Aris
Prof. Ashok Agrawala aris@cs.umd.edu

allowing people to concentrate on their tasks and sets it as the goal of the ubiquitous
computing, the third wave of the computing revolution[19]. The first and second waves, or
trends [20] are mainframe computing, and personal computing. The mainframe ea has
many situations where there is a single omputer and many people using it, while in the
personal computing era, the aurrent era, every person haes one or two computers and in the
era of ubiquitous computing, there is one person kenefiting from many computers. Weiser
predicts that the use of personal computers will i ncrease before deaeasing, while we enter
the @a of ubicomp, short for ubiquitous computing. He daims that computers are drealy
around s, although small or specialized, in watches, toasters, ovens, cars and wall ets. The
difference will be that they will be communicating with each aher for the benefit of
people, and dorit need to be more powerful in order to domany tasks at once

Making an analogy with kitchen utensils, a general computer that does amost
every task for usis smilar to having one gparatus in the kitchen that can cook, bal, chop,
toast, and wash, which would probably be complicaed, heavy, and hard to use [19]. With
this analogy, Weiser supports his ideaof “less being an improvement” as the computing
devices will be small and do ony afew functions but very well. Jain and Wullert et al. [5]
also pant to the importance of using less(material and energy), and dscussabou the life
span o the devices, using them longer and how to construct devices (such as labeling
comporents with RF tags to record their identiti es) for smart disposal.

The power of ubiquitous computing doesn’t come from the mere wlledion d the
many individual computing devices but arises from the interconredion o them. They will
be ale to send information to ead ather and wse locd information to customize acording
to peopl€’ s current needs.

Early Prototypes

One of the erly research efforts for ubiquitous computing came from the Oli vetti
Reseach group (ORL) in England and Xerox PARC, namely to buld the adive badge
locaion system [17]. The adive badge is a small devicethat can be worn by personrel in a
building. Every adive badge has a unique identity information onit and it transmits this
identity information va InfraRed (IR) every 10 seconds. The adive badge can be used
indoas only because the IR is to be recaved by the sensors which are located in a buil ding
equipped with them. Some of the ealy scenarios that were thought for the uses of adive
badge location systems are that doors could open on the right badge weaer, rooms could
gred people by their names, phore cdls can be aitomaticdly forwarded to the room that
the person cdled is in (by looking up its id in the system and locaing the person), and
computer terminals could retrieve user preferences automaticdly [21].

The Xerox PARC reseach group lelieved that two issues were important: location
and scde. Active badges were an example to addressthe locaion issue. The scde is abou
the size of the computing devices. The research group in Xerox PARC developed 3 types
of prototypes of varying scde, namely tabs, pads and bards. These are general names. The
research groupin Xerox PARC produced a prototype for each called ParcTab, Mpad, and
Liveboard, respedively [18]. Tabs are inch-scale, pads are foot-scde, while boards are
yard-scale. It was envisioned that a room would contain approximately 100 tabs, 10-20
padsand 1 o 2 baards.

Ubiquitous Computing CMSC 8182, Fall 2003 Aleks Aris
Prof. Ashok Agrawala aris@cs.umd.edu

Tabs are small enough to be d@tadhed to things, they can be in various forms, such
as an adive post-it note. pads behave like a shed of paper, they are not a laptop a
notebook computer though.

Pads are designed more to be “scrap” computers. They don't have astatic identity
and acaommodate various tasks. For instance, one @uld use pads to organize tasks on a
desk, as a reminder for ead task (or part of task) that needs to be done. Unlike laptops,
they are not intended for carrying. One may leave apad in aroom, and pck up ancther one
in ancother room, and nd cary pads from room to room. Laptops have atoo small visual
areg a desk of 9"x11” usudly is not sufficient, ore neads more space, which can be
adhieved by pladng many pads next to ead ather.

Boards are usualy intended to cover large aress such as a wall. Interadive
operations such as awirelesseledronic chalk, using which ore can write withou touching
on the board [21]. Some possble uses of boards are to eledronicdly mediate medings,
even share meetings across the Atlantic (PARC (in US) and EuroPARC (in Europe) had
such experiences). A board where puldic information is displayed on may adapt the
information presented according to its readers. This can be adieved by having users wear
adive badges on and pu sensors on a near the board. This is an example for the emerging
power of the ubiquitous computing devices due to their interaction.

Early thoughtsfor the design of ubiquitous computing

The @mnventional operating systems usually assume that the hardware and software
configurations won't change. However, thisis not true for ubicomp devices which change
locaions and situations, and real to adapt to new circumstances where the configurations
need to be dtered. To suppat ubicomp devices, the future operating systems had better
shrink and gow to fit needs, dynamicdly. Rashid (CMU) and Tanenbaum (VU) designed a
micro-kernel operating system that uses scafolding, where modues can be alded and
removed (for thisreason the kernel is minimal, andis cdled micro) [21].

From the hardware point of view, small devices need to consume little power to
avoid freguent replacement of batteries which will mean interruption for users. Since power
is propational to the square of voltage, it is effedive to reduce power by reducing voltage.
While much effort has been spent to reduce the size of chips, for low power devices, by
douHing the size of the dip, the dock speed can be reduced in half, which helps deaease
the power requirements. Since arcuits in chips designed for high speed generally fail to
work at low voltages, it is not passible to simply design the fastest possble dhip and then
runit at areduced clock speed and vdtage [18].

The reseach group in Xerox PARC, when they designed their ParcTab system,
tried to have the batteries last longer by having the system enter power saving mode after a
brief period d inadivity [13]. The adive badge system used a li ght-dependent componrent,
and the badge would turn off when it gets dark to conserve battery life [17]. Both systems
used IR because infrared transducers are small, low cost, and most importantly low power.

Acoording to Weiser, threetypes of network connedions would become preval ent:
tiny-range cnredions, long-range wireless connedions, and very high speed wireless
conredions[21].

A potential problem would be privacy [19], becaise so much persona information
would be aound in the cmputing devices and in the networks that conred them.
EuroPARC applied the ideathat personal information shoud be only stored in a computer

Ubiquitous Computing CMSC 8182, Fall 2003 Aleks Aris
Prof. Ashok Agrawala aris@cs.umd.edu

which belongs to the person as oppased to storing at a central repasitory, which was the
ealier approach used [18]. Other systems that need personal information would get it from
that computer. This way the information would be seaured in a place that is personal and
would be proteded by whatever precautionary or protedive software has been installed on
that particular computer.

New Viewsin Ubiquitous Computing

The interactivity of ubiquitous computing devices to adapt to various stuations
necesstates different kind d principles when bulding appli cations [4]. Banavar, from IBM
T.J. Watson Center, provides us with dfferent views for three ubicomp elements. (1) A
device isnat arepository of custom software, bu a portal into an application a data space
(2) An application is nat software to exploit device s capabiliti es but is a means for a user
to perform atask. (3) The computing environment is not a virtual spacethat exists to store
and run software, rather it is a user’ s information enhanced surroundngs [3]. Tasks need to
be dynamic in ubdcomp so that they can easily be transferred from device to device [10] as
in the scenario with Jane in [4], where she @ntinuows to monitor the meding from her
PDA and when she leaves, from her cdl phore, and then from the limousine’s badk sed’s
screen while going to the drport. If the device is viewed as a repository of custom
software, then al problems with pating the software to another device arise. A solutionto
this is to view the devices as a portal to an applicaion, so it communicates with the
application and retrieves whatever necessary and pasble to a arrently used device. In the
same scenario abowve, whil e the limousine drives, different network conrections are formed
(seamlesdy) and the qudlity of those may be different. The resolution d the video
streaming adapts to the quality of the network connedions avail able that time. Thisis an
excdlent example to the view that the goplicaion shoud be viewed as ameans to perform
atask as the important thing for Jane is to continue getting information abou the meding.
If the goplicaion was written to exploit the device' s cgpabiliti es only, then maybe it would
use the highest resolution being insensitive to the quality of network connedions avail able,
and Jane wouldn't be &leto perform her task satisfadorily.

Acoording to the new applicaion model Banavar talks abou, the lifecycle of
pervasive cmputing can be divided into three design-time, load-time and run-time [3].

Design Time

Thisisthe time when the devel oper creaes, maintains and enhances the gplicaion.
When the gplicaion is designed, nospedfic assumptions sioud be made @ou the user
interface. Even the aaumption that there is a screen, will be problematic when the
applicaion shoud run on a voice synthesizer, or a phane. The user interadion shoud na
be hard coded, but dynamicdly created according to the structure of the task. Tasks could
be defined in terms of subtasks but not in terms of static interaction elements sich as a
button a a spoken command. When it comes to take an inpu, either a button a a spoken
command shoud be able to be given as the situation permits. In general, abstract
interadion elements should be identified that cgptures user intent.

The services that the applicaion uses neal to be spedfied in an abstrad way and
not named explicitly. The design shoud be genera enough so that even services not known
at design time aould be used by the applicaion later a runtime a appropriate. A locaion
service is a cae in pdnt. Spedficdly, a location service will be used according to

Ubiquitous Computing CMSC 8182, Fall 2003 Aleks Aris
Prof. Ashok Agrawala aris@cs.umd.edu

avail ability such as GPS aweb based locaion service, or ancther mechanism. An abstrad
service description language may be needed to achieve this.

Load Time

During load time, the system compaoses, adapts and loads the gplicaion
comporents into an applicaion instance on particular hardware devices. Since devices
shoud be viewed as portals to applications, they need to dscover what applications are
available and the system needs to adapt the gplication to the resources available in the
device The gplicaion shoud be spedfied in terms of requirements, and the resources in
terms of cgpabiliti es auch that a mediating algorithm between the two can negotiate an
appropriate match.

The system must be dynamic & load time because the tasks my depend on the
surroundngs. It shoud dscover and compaose the services that are available & ftware
comporents that live in the surroundng environment. In contrast to today, software needs
to manually be installed from a CD to device for instance and therefore is not dynamic.
One effort considered detaching context handing from service matters with the use of
context-aware padets (CAPs) in an architedure cdled CAPEUS (Context-Aware Padkets
Enabling Ubiquitous Services) [12].

There may not be eiough resources avalable. In that case, orly hostable
applicaions and services nead to be displayed when the user needs to make a toice At
times, due to limited resources or low performance of the device & hand, it is desirable to
split the exeaution buden between the device and avail able servers. This operation is
cdled appartiotioning [3].

There are several challenges related to the negotiation, which is necessary to match
available services with available resources. One dalenge is modeling device
characteristics and applicaion requirements. A metric needs to be developed and the
requirements and resources shoud be spedfied using the same terms. Ancther chalenge is
to find fast and efficient appartitioning algorithms. One reason for thisis that loading may
not be a one-time operation bu may be performed ore dter another as me resources
becme unavail able and some others avail able, and regppantments are necessary.

Run Time

During run-time, the user invokes the goplicaion and wses its functionality. At run-
time, resources need to be monitored so that the goplicaion can adapt acwrding to the
resources available. Hand-off of task context from one environment to ancther, such as
from office to car, shoud be suppated. The user’s access to the task shodd na be
interrupted. This could be adieved by maintaining the state a continuots, or if that is not
paossble, provide off-li ne functionaliti es that the user can continue working onthe task.

Handing of unexpeaded failures such as exhausting batteries or service crashes is
highly desirable & these have great impad on the user at least in terms of system
avail abili ty.

At runtime, regpantments are necessary when dsconredion accurs. The
regppantments neal to be non-obtrusive to the user. Regppantments had better be dore
when the danges are relatively permanent and nd transient. Ideally, the system shoud
deted the transient changes and nd make unnecessary regopointments. Regopadntments
could be user-initi ated, too, and will be performed when the user expeds a disconredion to

Ubiquitous Computing CMSC 8182, Fall 2003 Aleks Aris
Prof. Ashok Agrawala aris@cs.umd.edu

occur, for example. When there are multiple doices, it may also be desirable in certain
cases to make the dhoices avail able to the user to et the user have control over the dhoice.

Acoording to the @nnectivity, the gpanter may migrate the exeaution burden,
such as migrating to client if there ae sporadic network disconredion. A major challenge
is to automate disconredions and reconredions as much as possble. Medchanisms auch as
queuing network requests need to be designed and provided as a framework to be used
when dsconnedions occur. Disconnedions are expeded phenomena, and shoud na be
confused with failures, but often it is challenging to dstinguish between them for the
system. It is necessary for the system to deted it corredly because depending on whether it
is a disconredion or failure the system may need to behave differently. Chedkpointing
strategies may be adapted as a way of handing failures. Replication is a ommonly used
methodin traditional systems for fault tolerance but it is nat sufficient by itself for ubicomp
applicaions[10Q].

Radikainen, Christensen and Nakajima discuss applicaion requirements for
middleware, which is a set of generic services above the operating system [10]. Typical
middleware services include locdion transparency and failure transparency. Common
Objed Request Broker Architedure (CORBA), Java 2™ Enterprise, Micro Editi ons (J2EE
& J2ME), Distributed Common Objed Model (DCOM), and Wireless Applicaion
Environment (WAE) are examples of middleware [10]. In order to provide gplications that
are context-aware, personalized and adaptive, various oftware achitectures are propaosed
(e.g. Sahara and MITA [10]). These achitedures define an execution support layer that
encgpsulates the functions of middieware. An exeaution suppat layer shoud provide fast
service development and deployment. It shoud be eay to dvide the gplicaion logic,
distribute these comporents and configure them as well as redistribute and reconfigure
them. It shoud provide aconsistent, efficiently aacessble, reliable and highly avail able
information bese, probably a distributed, and replicaed worldwide “file system” that also
suppats intelli gent synchronizations of data dter disconnedions (except being worldwide,
Coda [16] has most of these fedures). Several research isaues are aldressed in [10]. One of
the research challenges is the partitioning of applicaions and dacenent of different co-
operating parts. Moreover, when the exeaution environment changes sgnificantly, the -
operating parts may need to be redistributed.

Ubiquitous Computing Projects & Applications

There ae several ubiquitous computing projeds developed by the systems group d
Mahadev Satyanarayanan at CMU such as Coda [16], Aura [14], and Odyssey. Codais a
distributed file system that provides disconneded operation for mohile computing. It is
high performance through client side cadiing. It has good scdability, a well defined
semantics of sharing, even in the presence of network failures. It continues to operate
during partia network falures in a server network and it suppats server replication. In
addition, it has a seaurity model for authenticaion, encryption and access control. Coda
works very well when there ae few conflicts and its grategy to resolve conflicts is pretty
eff ective for objects with simple semantics such as file diredories, bu is ineff ective when
the objeds are ammplex and many conflicts (30%) may remain ursolved [9]. The DAgora

Ubiquitous Computing CMSC 8182, Fall 2003 Aleks Aris
Prof. Ashok Agrawala aris@cs.umd.edu

system propases a more eff ective solution based ona cading mechanism in clients and a
we&kly consistent server replication strategy [9].

The goa of the Aura projed [15] is to design the system in such a way that it
doesn't distrad the user. It tries to provide an invisible halo of computing and information
services that persists regardlessof location [4].

Some other projeds address the following challenges: Codtown of HP, service
construction and compasition, as well as user experience validation; Jini of Sun, context-
based adaptation; Oxygen a MIT and Aware Home & Georgia Tech, user experience
enhancement and validation; PIMA at IBM, applicaion development and deployment as
well as context based adaptation; Portolane & University of Washington, software
infrastructure, service nstruction and composition, as well as user experience
enhancement and vali dation; and Semantic Web addresses ssmantic modeling. [4]

Semantic modeling tries to solve the interoperability problem that arises due to the
very large range of devices. The airrent interoperability standards won't scde to satisfy
ubicomp interoperability issues due to dramatic increase of conrectivity requirements.
Semantic modeling is a'so motivated from the aiticd observation that the source of most
serious challenges in pervasive computing are not techndogicd but structural [7]. Four
caegories of semantic corflicts are reported in [7]: naming conflicts (different names used
to represent the same concepts), damain corflicts (different reference systems, such as
different currency), structural conflicts (diff erent data organizations that represent the same
structure), and metadata conflicts (the same @ncept is represented with ore data type
within the modeli ng type of one system and with a diff erent type within another system). In
the past, these cnflicts are solved by designing the system appropriately, which turns out
to be inappropriate for systems that need to interchange in dynamic environments.
Ontologies are provided as a solution by introducing a level where systems use common
ontologies to dedde aout semantics. With the use of ontologies, semantic interoperabili ty
can be achieved by runtime comparison d and inference dou ontologicd information[7].
Severa XML based representation languages are emerging that are based on W3C's
Resource Description Framework (RDF). Using semantic mark up languages and
ontologies, knowledge @ou various pervasive computing parties can be encoded at
credion time and reasoned uponlater. Sinceit is very likely that there will be no common
agreament on ore representation language, eat ukicomp element must encode knowledge
abou itself using expilicit reference to an appropriate ontology.

Reseachers at Siemens work to buld a situated computing framework [8]. Small
screen devices may not have dl the resources for some gplicaions sich as multimedia
They propacse outsourcing and rediredion as possble solutions. For example, consider that
there is a speakerless monitor and a telephore in aroom. A person’s PDA may outsource
the video part of AV to the monitor and the audio part to the telephore. At times,
conversion may be ancother solution when there is no resource for a certain data. For
example, when there is text, bu only audio resources are available, the text may be
converted to audio form and presented as such. They caegorize the interactivity into three
as abdicaive, cooperative and exclusive. In abdicaive cae, the PDA hands over the
control to the output device, while in exclusive ase the only input device is PDA, which is
used when the output device has no inpu fadliti es avail able, such asaTV. In cooperative
case, PDA and inpu capabiliti es of the output device ca jointly be used to control the
applicaion. A speada mobile user interface on the PDA is needed for the cooperative and

Ubiquitous Computing CMSC 8182, Fall 2003 Aleks Aris
Prof. Ashok Agrawala aris@cs.umd.edu

exclusive modes. One possble gplicaion scenario is controlling the mouse aursor
wirelesdy via the PDA. In such a scenario, Myers et a. proposes to enter al mouse
commands on the PDA using stylus [6]. This is a passble solution provided that there is
wirelesscommunicaion abili ty [8].

Pervasive computing was nealed for the International Monitoring System of the
CTBTO PrepCom?, an arganization besed onthe Comprehensive Nuclear Test Ban Treay
(CTBT) for knowledge management. There ae many IMS stations that are interconrected,
and there ae CTBTO manuals that provide procedures for various issies such as
installation, data quality, data transmisson, uptime, and seaurity. However, a lot of tacit
knowledge and information reads to be used which is discovered and dbesn’t exist in the
manuals. The station operators need such information, espedally for some spedal purpose
equipment for an IMS station kecaise it takes a lot of effort to lean it by trial and error.
Pervasive computing could capture and dsseminate such locd knowledge in order to asgst
station operators. [1] discusses all the problems and howv a ubiquitous framework helps to
solve those.

Conclusion

Ubiquitous computing, if finally realizable, seams to have so much to dffer to ou
lives as envisioned by researchers. However, it a'so seams to be alarge, complicated and
multil evel problem with many different aspects that it is even hard to define what ubicomp
isinterms of an architecture. There have been such eff orts but thase achitedures seem not
to be general enough to cover all aspects. It is sich an open ended problem and it is likely
that some definitions include severa high expedations from ubicomp that some of them
may not be achievable esen in principle. There has been much reseach dane for ubiquitous
computing and it seems there is sme acaimulated experience today about it as compared
to when it first started but thereis gill along way to go to attain red ubiquitous computing.
It isalso na clea whether a unified ukbquitous computing will be adieved in the future or
a least different parts that can communicae with eat aher. And maybe we will have
many diff erent ubicomp frameworks that are not compatible with each ather and maybe we
will cdl them something else but not ubiquitous computing. Nevertheless the motivationis
clea to udcomp researchers, and it is expeded that ubicomp efforts will continue & least
during the nea future.

References

1. P. Amann and G. Quirchmayr. Foundition d a framework to support knowledge
management in the field of context-aware and pervasive computing. In Proceedings
of the Australasian information security workshop conference on ACSW frontiers
2003, pages 119-131.Australian Computer Society, Inc., 2003

2. Anderson, J. R. Cognitive Psychology and Its Implications. Freeman, 4" Edition,
page 92, 19951SBN: 0-716723859.

3. G. Banavar, J. Bek, E.Gluzberg, J. Munson, J. Susgnan, and D. Zukowski.
Chall enges: an application model for pervasive ommputing. In Proceedings of the 6
annual international conference on Mobile computing and networking, pages 266-
274,ACM Press 2000.

“http://www.ctbto.org

Ubiquitous Computing CMSC 8182, Fall 2003 Aleks Aris
Prof. Ashok Agrawala aris@cs.umd.edu

4. G. Banavar and A. Bernstein. Software infrastructure and design challenges for
ubiquitous computing appli cations. Commun. ACM, 45(12):92-96, 2002.

5. R. Jan and J. Wullert, Il. Challenges.: environmental design for pervasive
computing systems. In Proceedings of the 8" annual international conference on
Mobile computing and networking, pages 263-270. ACM Press 2002.

6. B.A.Myers, H. Stiel, and R. Gargiulo. Collaboration wsing multiple PDASs
conreded to a PC. In Proceedings of the 1998 ACM conference on Computer
supported cooperative work, pages 285294.ACM Press 1998.

7. D. OSulivan and D. Lewis. Semanticdly driven service interoperability for
pervasive computing. In Proceedings of the 3 ACM international workshop on
Data engineering for wireless and mobile access, pages 17-24. ACM Press, 2003.

8. T.-L. Pham, G. Schneider, and S. Gocse. A situated computing framework for
mobile and ukiquitous multimedia accesusing small screen and compaosite devices.
In Proceedings of the eighth ACM international conference on Multimedia, pages
323-331.ACM Press 2000.

9. N. Preguicga, J.L. Martins, H.J. Domingos, and J. Simao. Flexible data storage for
mobile computing. In Proceedings of the 1999 ACM symposium on Applied
computing, pages 405-407. ACM Press 1999.

10.K. Raaikainen, H. B. Christensen, and T. Nakajima. Application requirements for
middleware for mobile and pervasive systems. SGMOBILE Mob. Comput.
Commun. Rev., 6(4):16-24, 2002.

11.D.M. Russll and M. Weiser. The future of integrated design of ubiquitous
computing in combined red & virtual worlds. In CHI 98 conference summary on
Human factors in computing systems, pages 275-276. ACM Press 1998.

12.M. Samulowitz, F. Michahelles, and C. Linhdf-Popien. Adaptive Interaction for
Enabling Pervasive Services. In Proceedings of the 2nd ACM international
workshop on Data engineering for wireless and mobile access, pages 20-26. ACM
Press 2001.

13.B. N. Schilit, N. Adams, R. Gold, M. M. Tso, and R. Want. The PARCTAB mobile
computing system. In Workshop on Workstation Operating Systems, pages 34-39,
1993.

14.S. M. Thayer and P. Steenkiste. An architedure for the integration of physicd and
informational spaces. Personal Ubiquitous Comput., 7(2):82-90, 2003.

15.The AuraProjed, Carnegie-Mellon University. http://www.cs.cmu.edu/~aura/

16.P. J. Braam, The Coda Distributed File System. Linux Journal, 46-51, June 1998

17.R. Want, A. Hopper, V. Falcao, and J. Gibbors. The adive badge locaion system.
ACM Trans. Inf. Syst., 10(1):91-102, 1992.

18.M. Weiser. Some @mputer science isaues in ukquitous computing. Commun.
ACM, 36(7):75-84, 1993

19.M. Weiser. The future of ubiquitous computing on campus. Commun. ACM, 41(1)
41-42, 1998.

20.M. Waeiser. http://www.ubig.com/hypertext/weiser/UbiHome.html, Ubiquitous
Computing

21.M. Weiser. The omputer for the 21% century. SIGMOBILE Mob. Comput.
Commun. Rev., 3(3):3-11, 1999.

	Ubiquitous Computing
	Ubiquitous Computing Projects & Applications

	Conclusion
	References

